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Crossed products

An action of G on a C∗–algebra A is a homomorphism α : G→ Aut(A)
giving rise to a C∗–dynamical system (A,α,G).

A covariant representation of (A,α,G) in a C∗-algebra B is a pair (ψ, π) of
maps ψ : A→M(B), π : G→ UM(B) such that

ψ(αg(a)) = π(g)ψ(a)π(g)∗

The crossed product A×α G is generated by a universal covariant
representation of (A,α,G).

When G is abelian, the crossed product A×α G, carries a natural action α̂ of
Ĝ.
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Coactions

When G is nonabelian, there is a dual coaction α̂ of G on A×α G.

A coaction of G on a C∗-algebra A is an injective nondegenerate
homomorphism δ : A→ A⊗ C∗(G) such that (δ ⊗ id) ◦ δ = (id⊗ δG) ◦ δ.
Where δG is the canonical coaction of G on C∗(G).

There is a notion of a covariant representation of (A, δ,G) however it is a bit
technical.

The crossed product A×δ G is generated by a universal covariant
representation of (A, δ,G) carrying a natural dual action δ̂ of G.
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Nonabelian Duality

Theorem 1 (Takesaki,Takai)

Let A be a C∗–algebra and G a group.

(1) Let α be an action of G on A, then the dual coaction α̂ of G on A×α G
such that

(A×α G)×α̂ G ∼= A⊗K(L2(G)).

(2) Let δ be a coaction of G on A, then the dual action δ̂ of G on A×δ G
such that

(A×δ G)×
δ̂
G ∼= A⊗K(L2(G)).
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Group actions on directed graphs

A graph morphism φ : E → F is a pair φ = (φ0, φ1) of maps φi : Ei → F i

for i = 1, 2 such that for all e ∈ E1

s(φ1(e)) = φ0(s(e)) r(φ1(e)) = φ0(r(e))

Definition 2

An action of a group G on a directed graph E is a group homomorphism
α : G→ Aut(E).

For v ∈ E0 and e ∈ E1 let

[u] = {v ∈ E0 : v = α0
gu for some g ∈ G}

[e] = {f ∈ E1 : f = α1
ge for some g ∈ G}.

If we put E0/G = {[u] : u ∈ E0}, E1/G = {[e] : e ∈ E1} and set

r′([e]) = [r(e)] s′([e]) = [s(e)] for [e] ∈ E1/G

then E/G = (E0/G,E1/G, r′, s′) is a directed graph, called the quotient
graph.
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Group actions

By the universal property of C∗(E) an action α of G on E induces an action
of G on E∗ which transforms a Cuntz–Krieger E–family (s, p) in a
C∗–algebra B into a Cuntz–Krieger E–family (s ◦ α, p ◦ α) in B.

By the universal property of C∗(E), this induces an action α∗ of G on
C∗(E). Hence we may form the crossed product C∗–algebra C∗(E)×α∗ G.
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Free actions, skew product graphs

The action α of G on E is free if α0
gv = v for all v ∈ E0 then g = 1G.

Let E be a directed graph, G a group and c : E1 → G a function. The
skew–product graph E ×c G has vertices E0 ×G, edges E1 ×G and range
and source maps

r(e, g) = (r(e), gc(e)) s(e, g) = (s(e), g).

There is a natural free action λ of G on E ×c G given by

λih(x, g) = (x, hg) for i = 0, 1 and h ∈ G.

The quotient (E ×c G)/G is isomorphic to E.

7 / 17



Gross–Tucker Theorem

The Gross–Tucker Theorem says that the situation on the previous slide is
generic: if a group acts freely on a graph it is acting on a skew–product graph.

Theorem 3 (Gross–Tucker)

Let E be a directed graph and α a free action of a group G. Let
η : (E/G)0 → E0 be a section for the quotient map q0 : E0 → (E/G)0, then
there is a function cη : (E/G)1 → G such that (E/G)×cη G is equivariantly
isomorphic to E.
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Back to graph algebras

Theorem 4 (see [2],[3])

Let E be a row-finite directed graph with no sources and G a countable
group.

(1) Let α be a free action of G on E, then
C∗(E)×α∗ G

∼= C∗(E/G)⊗K(`2(G)). Indeed
C∗(E)×α∗ G ∼me C∗(E/G).

(2) Let c : E1 → G be a function, then
C∗(E ×c G)×λ∗ G ∼= C∗(E)⊗K(`2(G)).

The connection between Theorem 4 and Theorem 1 is explained by:

Theorem 5 (see [1])

Let E be a row-finite directed graph with no sources, G a group and
c : E1 → G a function. Then there is a coaction δc of G on C∗(E) such that
C∗(E)×δc G is equivariantly isomorphic to C∗(E ×c G).
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Trees

Recall that a connected directed graph is a tree if it is simply connected.
Let T be a row-finite tree with no sources, so there are no finite boundary
paths. Define an equivalence relation on ∂T by

x ∼ y if there is k ∈ Z and N ≥ 1 such that xi+k = yi for i ≥ N.

Let ∆T = ∂T/ ∼ be the set of equivalence classes, which we call the
boundary of T , and denote the quotient map x 7→ [x] by φ.

Definition 6

Let v ∈ T 0, define Y (v) = {[x] ∈ X : s(x) = v}.

For u 6= v ∈ T 0 the set Y (u) ∩ Y (v) is nonempty if and only if the unique
walk from v to u is an undirected path of the form αβ−1 for some αβ ∈ T ∗;
in which case Y (u) ∩ Y (v) = Y (w) where w = s(α).
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The C∗-algebra of a tree

Lemma 7 (see [2])

Let T be a row-finite tree with no sources. Then {Y (v) : v ∈ T 0} forms a
basis of compact open sets for the quotient topology on ∆T := ∂T/ ∼. The
map φ : ∂T → ∆T is a local homeomorphism and ∆T is Hausdorff.

The space ∆T is compact if E0 is finite and is locally compact otherwise.

Theorem 8 (see [2])

Let T be a row-finite tree with no sources. Then C∗(T ) is Morita equivalent
to C0(∆T ), the abelian C∗-algebra consisting of continuous complex valued
functions on ∆T which vanish at infinity.
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Some discrete topology

Let E be a connected directed graph, that is for any two vertices
u, v ∈ E0 there is an undirected path from u to v.

Let T be a maximal spanning tree for E; so T is a subgraph of E such
that T 0 = E0 and T is simply connected. The existence of T is
equivalent to the axiom of choice.

Fix v ∈ E0. For each e ∈ E1\T 1 let µe denote the unique reduced walk
in T from v to s(e) followed by e then the unique reduced walk in T
from r(e) to v; so µe ∈ π1(E, v).

Theorem 9

Let E be a connected directed graph, T a maximal spanning tree and
{µe : e ∈ E1\T 1} as above. Then

π1(E, v) ∼= 〈µe : e ∈ E1\T 1〉,

In particular if E is row-finite and E0 is finite π1(E, v) is a free group of
order |E1| − |E0| − 1.
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Examples

The maximal spanning tree of the graph va b consists of just

the vertex v. Since the edges a, b are not in the maximal spanning tree
the fundamental group of this graph is isomorphic to, F2, the free group
on two generators, a and b.

The maximal spanning tree of the graph • •
e

consists of

both vertices and the edge e. The fundamental group is then isomorphic
to F2.

The maximal spanning tree of the graph • •
e consists

of both vertices and the edge e. The fundamental group is then
isomorphic to F3.
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Universal covering tree
Let E be a connected, directed graph with no sources, T a maximal spanning
tree and µe ∈ π1(E, v) as on the previous slide. Define c : E1 → π1(E, v) by

c(e) =

{
µe if e ∈ E1\T 1

v otherwise.

Form the skew product graph Z = E ×c π1(E, v) where Z0 = E0 × π1(E, v),
Z1 = E1 × π1(E, v) and

r(e, g) = (r(e), c(e)g) and s(e, g) = (s(e), g).

Then Z has no sources, is simply connected and is isomorphic to the
universal covering tree of E. Moreover, Z carries a free right action rt of
π1(E, v) given by

(e, g) · h = (e, gh).

We may then form the quotient graph Z/π1(E, v) with vertices Z0/π1(E, v),
edges Z1/π1(E, v) and range and source maps given by

r([e]) = [r(e)] and s([e]) = [s(e)].

One may show that Z/π1(E, v) is isomorphic to E.
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Example

The graph va b has fundamental group F2 = 〈a, b〉 and universal

covering tree:

(v,v) (v,a)

(v,b)

(v,a−1)

(v,b−1)

(v,a2)

(v,b2)

(v,a−2)

(v,b−2)
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The C∗-algebra of a graph

Theorem 10 (see [2])

Let E be a row-finite directed graph with no sources and Z be its universal
covering tree. Fix v ∈ E0 and let π1(E, v) be the fundamental group of E.
Then

C∗(Z)×rt π1(E, v) is Morita equivalent to C0(∆Z)×r̃t π1(E, v),

where r̃t is the induced action of π1(E, v) on ∆Z.

Corollary 11 (see [2])

Let E be a row-finite connected with no sources graph and fix v ∈ E0. Then
C∗(E) is Morita equivalent to C0(∆Z)×r̃t π1(E, v) where Z is the universal
covering tree of E and r̃t is the induced action of π1(E, v) on ∆Z.
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