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Purely infinite algebras

Ideals and Morita equivalence in C∗-algebras

By an ideal in a C∗-algebra we mean a closed, 2-sided ideal.
An ideal in a C∗-algebra is automatically closed under the ∗-operation
and so ideals are themselves C∗-algebras.
Let I be an ideal in a C∗-algebra A and J be an ideal in I, then J is an
ideal in A.
An ideal I of A is essential if I ∩ J is nontrivial for all ideals J of A.
A C∗-algebra A is then simple if it has no nontrivial ideals.
If A is not unital then there is a unital C∗-algebra M(A) which is the
maximal unitization of A in the sense that it contains A as an essential
ideal, otherwise M(A) = A.
If p ∈M(A) is a projection, then pAp is a corner of A.
The corner pAp is full if it is not contained in any proper ideal of A.
If B is isomorphic to a full corner of A then B is Morita equivalent to A.
If A,B are separable C∗-algebras then by [5] A and B are Morita
equivalent if and only if A and B are stably isomorphic that is
A⊗K ∼= B ⊗K
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Unital graph C∗-algebras

Proposition 1 (see [9])

Let E be a row-finite directed graph then C∗(E) is unital if and only if E0 is
finite.

Proposition 2 (see [3])

Let H ⊆ E0, then there is a projection pH ∈M(C∗(E)) such that

pHsαs
∗
β =

{
sαs
∗
β if s(α) ∈ H

0 otherwise.

The above proposition shows that the projection pE0 is identity element
M(C∗(E)). It is easy to see that pE0 ∈ C∗(E) if and only if E0 is finite.

In particular for any graph E, the C∗-algebra C∗(E) has a countable
approximate identity.
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Cofinality

Definition 3 (see [12])

Let E be a row-finite directed graph. Then E is cofinal if for every x ∈ ∂E
and v ∈ E0 there is i ≥ 1 and α ∈ E∗ with s(α) = v and r(α) = r(xi).

v

. . .
s(x)

x1 x2 x3

α

Note definition of cofinality used here differs from most found in the
literature. We use it here to get a clean result

Theorem 4 (see [12])

Let E be a row-finite graph then C∗(E) is simple if and only if every cycle has
an exit and E is cofinal.
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Examples

The graph is cofinal but has a cycle without an exit and so its
C∗-algebra is not simple.

The graph is cofinal and every cycle has an exit and so is simple;
in fact its C∗-algebra is isomorphic to the Cuntz-algebra O2.

The graph is not cofinal and is hence not simple; in fact its
C∗-algebra is isomorphic to the Toeplitz algebra, T .

The graph is cofinal but has a cycle which does not have an
exit and so its C∗-algebra is not simple.

The graph . . . is cofinal and every cycle has an
exit, and so its C∗-algebra, the compact operators K, is simple.
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Strong connectivity

Definition 5

A graph E is strongly connected or transitive if for every u, v ∈ E0 there is
α ∈ E∗ with s(α) = u and r(α) = v.

Corollary 6 (see [7])

Let E be a finite graph which is not itself a cycle. Then C∗(E) is simple if
and only if E is strongly connected.

Example 7

The following finite graph is strongly connected and not a cycle.

• •RP :=

Hence C∗(RP ) is simple.
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Saturated hereditary sets of vertices

Let v, w ∈ E0 then w ≤ v if and only if there is α ∈ E∗ such that s(α) = v
and r(α) = w.

Definition 8 (see [6], [1])

Let E be a row-finite graph. A collection of vertices H ⊆ E0 is:

Hereditary: If v ∈ H and w ∈ E0 with w ≤ v then w ∈ H.

Saturated: If v ∈ E0 satisfies {r(e) : s(e) = v} ⊂ H then v ∈ H.

E0, ∅ are saturated hereditary sets for any row-finite graph.

Example 9

In the graph w v u the sets {w} and {w, v} are hereditary,

but {u} is not. The set {w, v} is saturated, but the set {w} is not.
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Examples I

Example 10

The following directed graph has a saturated hereditary subset of vertices in
the shape of a triangle based at each vertex, as indicated by the coloured
vertices H1

H2

as shown.
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Theorem 11 (see [1], [2])

Let E be a row-finite directed graph and H be a saturated hereditary subset
of E0 then

IH := span{sλs∗µ : r(λ) = r(µ) ∈ H}

is a closed 2-sided ideal of C∗(E) which is gauge–invariant in the sense that
γz(a) ∈ IH for all z ∈ T and a ∈ IH . Moreover, every gauge–invariant ideal is
of this form.

Theorem 12 (see [6], [1])

Let E be a row-finite directed graph and I be a nonzero ideal in C∗(E), then

HI := {v ∈ E0 : pv ∈ I}

is a saturated hereditary subset of E0.
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Condition (K)

Definition 13 (see 10)

Let E be a row-finite directed graph. Then E satisfies condition (K) if for
every vertex v, either there is no cycle based at v or there are two distinct
paths α, β with s(α) = r(α) = s(β) = r(β) = v such that r(αi) 6= v for
i < |α| and r(βi) 6= v for i < |β|.
If E has no cycles then it automatically satisfies condition (K).

Example 14

The graph does not satisfy condition (K), whereas the

graph does; as does the graph • •
.
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Key property of condition (K)

Let H be a hereditary subset of the vertices of a row-finite graph E. Then

E\H := (E0\H, r−1(E0\H), r, s)

is a directed graph.

Example 15

w v u

Recall from Example 9 that in the graph
shown the set H = {w, v} is saturated
and hereditary.
Note that E\H consists of the single
loop at u.

Lemma 16 (see [2])

Let E be a row-finite directed graph. Then E satisfies condition (K) if and
only if for every saturated hereditary subset H of E0, every cycle in E\H has
an exit.
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Gauge invariant ideals

Theorem 17 (see [2])

Let E be a row-finite graph. Then every ideal of C∗(E) is gauge invariant if
and only if E satisfies condition (K).

Let H be a saturated hereditary subset of vertices of a row-finite graph then

EH := (H, s−1(H), r, s)is a subgraph of E.

Theorem 18 (see [6],[1],[10],[3],[2])

Let E be a row-finite graph which satisfies condition (K). Then

1 H 7→ IH is a bijection between the saturated hereditary subsets of E0

and the ideals of C∗(E), with inverse I 7→ HI ;

2 the quotient C∗(E)/IH is isomorphic to C∗(E\H);

3 C∗(EH) is isomorphic to the full corner pHIHpH .
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Example

Example 19
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Example

Example 19
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Example

Example 19
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Example

Example 19
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Example

Example 19
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Example

Example 19
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Primitive ideals of C∗-algebras

An ideal I is of A prime if it cannot be written as I = J ∩K where
J,K 6= I are ideals of A.

An ideal I of A is primitive if it is the kernel of an irreducible
representation of A.

If A is separable then every primitive ideal is prime, and conversely (see
[11]).

Let Prim(A) denote the set of primitive ideals of A, then every ideal in A
is the intersection of the primitive ideals containing it.

Let I be an ideal of A, then

h(I) = {P ∈ Prim(A) : I ⊂ P}

is a closed subset in a topology on the primitive ideal space Prim(A) of
A.
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Primitive ideals I

Since C∗(E) is separable, we look for the prime ideals. When E satisfies
condition (K), all ideals are gauge invariant, and so by Theorem 18 it suffices
to characterise the prime ideals in terms of saturated hereditary subsets of
vertices of E0. In fact it turns out to be easier to describe their complements:

Definition 20

Let E be an row-finite directed graph. Then T ⊆ E0 is called maximal tail if

1 For every v1, v2 ∈ T there is w ∈ T such that w ≤ v1 and w ≤ v2
(common ancestor).

2 For every v ∈ T there is e ∈ s−1(v) such that r(e) ∈ T
3 For w ∈ T and v ∈ Λ0 with w ≤ v we have v ∈ T .

The condition 3 above implies that complement of a maximal tail is a
hereditary subset of E0 and condition 2 implies that it is saturated.
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Primitive ideals II

Example 21

Recall the saturated hereditary collections of the directed graph in Example 10.
1 The set T1 is a maximal tail.

2 The set T2 is not a maximal tail as w ≥ v2 ∈ T 0
2 but w 6∈ T 0

2 .

3 The set T3 is not a maximal tail as v1, v2 have no common ancestor.
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Primitive ideals II
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Primitive ideals III

Theorem 22 (see [1], [3])

Let E be an row-finite directed graph which satisifies condition (K) then IH is
primitive if and only if E0\H is a maximal tail.

Example 23

Recall the saturated hereditary collections of the directed graph in Example 10.

1 The set T1 is a maximal tail and so the ideal defined by H1 is prime.

2 The set T3 is not a maximal tail and so the ideal defined by H3 is not
prime.

In fact IH3 = IH1 ∩ IH2 .
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Primitive ideals III
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Primitive ideals III
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AF C∗-algebras

Definition 24

A C∗-algebra A is approximately finite dimensional (AF) if there is a sequence
An of finite dimensional algebras such that An ⊆ An+1 and A = ∪∞n=1An.

Suppose A = ∪∞n=1An is an AF algebra, then the inclusion data An ⊆ An+1

may be encoded in a certain directed graph BA called the Bratteli diagram
associated to the approximating sequence {An} (see [4]). An AF algebra may
be defined by more than one approximating sequence, and hence more than
one Bratteli diagram. However if two unital AF algebras have the same
Bratteli diagram then they are isomorphic.

Theorem 25 (see [8], [13])

Let A = ∪∞n=1An be an AF algebra and BA the Bratteli diagram associated to
{An} then C∗(BA) contains a full corner isomorphic to A.
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AF graph C∗-algebras

Theorem 26 (see [9])

Let E be a row-finite directed graph. Then C∗(E) is AF if and only if E has
no cycles.

Example 27

•
• •

• • •
• • • •

• • • • •
• • • • • •

The graph shown has no cy-
cles and so its C∗-algebra is
AF. Moreover, the graph is the
Bratteli diagram for the AF al-
gebra A = ∪∞n=1An where

An = ⊕nm=1Mcnm(C) and

cnm =
n!

m!(n−m)!
.
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Purely infinite C∗-algebras

Let p, q be projections in a C∗-algebra A.

p ≤ q if and only if pq = p,

p ∼ q if there is a partial isometry u ∈ A such that uu∗ = q and u∗u = p,

p is infinite if there is a projection q 6= p such that q ≤ p and p ∼ q.

Let a be an element of a C∗-algebra A then a is positive if and only if there is
b ∈ A such that a = b∗b, and we write a ≥ 0. A C∗-subalgebra B of A is
hereditary if whenever 0 ≤ a ≤ b where b ∈ B and a ∈ A we have a ∈ B.

Definition 28

A simple C∗-algebra A is purely infinite if every hereditary C∗-subalgebra
contains an infinite projection.

In the nonsimple case an alternative definition of purely infinite is now used.

20 / 25



Purely infinite algebras

Purely infinite graph C∗-algebras

Lemma 29 (see [3])

Let E be a row-finite directed graph, and α a cycle with an exit. Then
ps(α) ∈ C∗(E) is an infinite projection.

Proof.

Without loss of generality let e 6= α1 be such that s(e) = s(α1). Let {s, p} be
a Cuntz-Krieger E-family generating C∗(E), then

prα = s∗αsα ∼ sαs∗α ≤ sα1s
∗
α1
< sα1s

∗
α1

+ ses
∗
e ≤ ps(α).

Theorem 30 (see [9])

Let E be a row-finite graph which is cofinal and every cycle has an exit. Then
C∗(E) is purely infinite if and only if for every vertex v ∈ E0 there is a cycle
α with s(α) ≤ v.
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Examples

The C∗-algebra of the graph • • is simple and purely

infinite since it is cofinal and every vertex lies on a cycle.
In fact the graph is isomorphic to E(1, 2) where E is the graph

Hence its C∗-algebra is isomorphic to the Cuntz-algebra O2.

The C∗-algebra of the graph . . . is not purely
infinite since it has no cycles at all and so the second condition in
Theorem 30 cannot be satisfied.

As we saw earlier, its C∗-algebra is isomorphic to the compact
operators K, which is an AF algebra. If we write K = ∪∞n=1An where
An = Mn(C), then this graph is the Bratteli diagram for this
approximating sequence.
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Dichotomy

Theorem 31 (see [9])

Let E be a row-finite directed graph which is cofinal and every cycle has an
exit. Then C∗(E) is either purely infinite or AF.

Proof.

Suppose E has no cycles, then C∗(E) is AF by Theorem 26.
Suppose E has a cycle α, then by cofinality for every v ∈ E0 we have
s(α) ≤ v and hence C∗(E) is purely infinite by Theorem 30.
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