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A brief history

1977-1981 Seminal papers by Cuntz and Krieger, [2, 4, 3].

1981-1982 Papers by Watatani and Enomoto giving graphical iterpretation,
e.g. [5].

1993-1995 Papers by Mann, Pask, Raeburn and Sutherland on
Doplicher–Roberts algebras and connection with Cuntz-Krieger algebras,
[9, 11].

1996-2000 Papers by Bates, Kumjian, Pask, Raeburn, Renault, Szymánski
developing theory of infinite Cuntz-Krieger algebras and then graph
C∗-algebras associated to row-finite directed graphs, [10, 8, 7, 1].

2000-2015 Explosion of interest in graph C∗-algebras, generalisation of
earlier results and applications to nonabelian duality, discrete topology.

2 / 19



Hilbert spaces

An inner-product on a complex vector space V is a map 〈·, ·〉 : V × V → C
such that for all x, y, z ∈ V and λ ∈ C we have

〈x+ λy, z〉 = 〈x, z〉+ λ〈y, z〉,
〈x, y〉 = 〈y, x〉,
〈x, x〉 ≥ 0 and 〈x, x〉 = 0 iff x = 0.

An inner-product space carries a norm defined by

‖x‖ :=
√
〈x, x〉.

A Hilbert space is an inner-product space which is complete with respect to
the norm arising from the inner product. For a more thorough treatment of
Hilbert space and operators on Hilbert space see [??].
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Hilbert spaces II

Let X be a set, then F (X), the collection of finitely supported functions
f : X → C, forms a complex vector space under pointwise operations.

Let `2(X) denote the Hilbert space completion of F (X)

For x ∈ X let δx : X → C be the function which takes the value 1 at x
and is zero otherwise, then δx ∈ `2(X).

As a vector space `2(X) has basis {δx : x ∈ X}.
If |X| = n then `2(X) is isomorphic to Cn.

If X = N then `2(N) = {f : N→ C :
∑

n∈N |f(n)|2 <∞}.
Let H be a Hilbert space then L(H) denotes the vector space of all linear
maps from H to itself.
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Bounded linear operators

Let H be a Hilbert space and T ∈ L(H), define

‖T‖op = sup{‖Tx‖ : ‖x‖ ≤ 1}.

Then T is bounded if ‖T‖op <∞.

Let B(H) denotes the subspace of L(H) of all bounded linear maps.

‖ · ‖op is a norm on B(H) and is complete with respect to it.

If H is finite dimensional then B(H) = L(H), which we may identify with
Mn(C) in the usual way.
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Adjoints

Let H be a Hilbert space then every T ∈ B(H) has an adjoint
T ∗ ∈ B(H) which satisfies

〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ H.

If H is finite dimensional, then the adjoint of A ∈Mn(C) is At, the
conjugate transpose of A.

Using properties of the inner product it can be shown that (T ∗)∗ = T
and (ST )∗ = T ∗S∗ for all S, T ∈ B(H).
By Theorems of Gelfand, Neumark and Segal (see [6],[13]) it can be
shown that a C∗-algebra can be thought of a norm-closed ∗-subalgebra
of B(H) for some Hilbert space H.
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Projections

Let H be a Hilbert space, then projection is a bounded linear map
P : H → H such that P = P ∗ = P 2.

There is a one-one correspondence between projections and closed
subspaces of H.

Projections P,Q are mutually orthogonal if PQ = QP = 0.

Example 1

The matrix

A =

(
1 0
0 0

)
is a projection in M2(C).

7 / 19



Partial isometries

Let H be a Hilbert space, then partial isometry is a bounded linear map
S : H → H such that S = SS∗S (equivalently SS∗, S∗S are projections).

A partial isometry S is named as such because for every x in S∗S(H),
the domain of S, we have ‖Sx‖ = ‖x‖. That is, S is an isometry from
S∗S(H) to SS∗(H), the range of S.

Every projection is a partial isometry.

Example 2

The matrix A =

(
0 1
0 0

)
∈M2(C) is a partial isometry,

with domain projection

(
1 0
0 0

)
and range projection

(
0 0
0 1

)
.
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Unitaries

Let H be a Hilbert space then a unitary is a bounded linear map
U : H → H such that UU∗ = U∗U = 1H, the identity map on H.

Every unitary is a partial isometry.

The spectrum σ(U) = {λ ∈ C : U − λ1H is not invertible } of a unitary
is a closed subset of T = {z ∈ C : |z| = 1}.
A partial unitary is a partial isometry, S which has the same range and
domain, that is S∗S = SS∗.

Example 3

The matrix

A =

(
0 1
1 0

)
∈M2(C) is a unitary

with spectrum σ(A) = {±1} ⊂ T.
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Directed graphs

A directed graph E = (E0, E1, r, s) consists of a countable set E0 of vertices,
a countable set E1 of edges, and maps r, s : E1 → E0 giving the direction of
each edge.

s(e) r(e)
e

A path in E of length n ≥ 1 is a sequence α = α1 · · ·αn of edges such that
r(αi) = s(αi+1) for i = 1, . . . , n− 1.

. . . . . .
s(αi) r(αi)αi

s(αi+1) r(αi+1)αi+1

Such α is said to have length n, the set of paths in E of length n is denoted
En. We set r(α) = r(en) and s(α) = s(e1). Note: There is another
convention where paths run from right to left to mimic the order of
composition of operators. This “Australian”convention was first used around
2004 (see [12]).
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Graph terminology

If v ∈ E0 then we define r(v) = s(v) = v.

v ∈ E0 is a sink if it emits no edges (s−1(v) = ∅).

v ∈ E0 is a source if it receives no edges (r−1(v) = ∅).

E is row-finite if each vertex has finite out-valency, i.e. |s−1(v)| <∞ for
all v ∈ E0.

Let E∗ = ∪n≥0En denote the set of finite paths in E.

A path α ∈ En where n ≥ 1 is a cycle if r(α) = s(α).

A infinite path is an infinite sequence x = (xi)i≥1 of edges such that
r(xi) = s(xi+1) for all i ≥ 1. We set s(x) = s(x1). The set of infinite
paths in E is denoted E∞.

A boundary path in E is either an infinite path x ∈ E∞ or α ∈ E∗ with
r(α) a sink. We denote the set of boundary paths in E by ∂E.

Every element of ∂E has a well-defined source vertex.
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Example

Consider the following directed graph,

w1

w2

w3

w4
c

b

d aE :=

The graph E is row-finite, with sink at w1 and source at w4. The boundary
paths are

∂E = {ab, cd, b, d, w1}
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The boundary path representation of a graph

We may define {Pv : v ∈ E0} on `2(∂E) by

Pvδx =

{
δx if v = s(x),

0 otherwise.

We may define {Se : e ∈ E1} on `2(∂E) by

Seδx =


δex if x is not a source and r(e) = s(x),

δe if x is a source and s(e) = x,

0 otherwise.

We may define {S∗e : e ∈ E1} on `2(∂E) by

S∗eδx =


δy if x is not a sink and x = ey,

δr(e) if x = e and r(e) is a sink,

0 otherwise.

Since {δx : x ∈ ∂E} is a basis for `2(∂E) these formulas determine a
linear maps Pv, Se, S

∗
e : `2(∂E)→ `2(∂E) which are bounded.
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Cuntz-Krieger relations I

For any graph E

The maps {Pv : v ∈ E0} are mutually orthogonal projections.
In our example, for instance

Pw4δab = δab Pw4δcd = δcd Pw2δd = δd Pw3δb = δb Pw1δw1 = δw1 .

Pw3Pw4δab = Pw3δab = 0 since s(ab) = w4 6= w3, etc.

The maps {Se : e ∈ E1} are partial isometries.
In our example, for instance we have

(SaS
∗
aSa)δb = δab and Saδb = δab.

For any f ∈ E1 we have S∗fSf = Pr(f).
In our example, for instance we have

(S∗cSc)δw2 = δw2 and Pr(c)δw2 = Pw2δw2 = δw2 .
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Cuntz-Krieger relations II

For v ∈ E0 which is not a sink we have Pv =
∑

e:s(e)=v SeS
∗
e .

In our example, for instance for w4 ∈ E0 we have
(SaS

∗
a + ScS

∗
c )(δab + δcd) = δab + δcd = Pw4(δab + δcd).

Definition 4

Let E be a row-finite graph, then a Cuntz-Krieger E-family {s, p} on a
Hilbert space H consists of

1 mutually orthogonal projections {pv : v ∈ E0};
2 partial isometries {se : e ∈ E1};
3 for all e ∈ E1 we have s∗ese = pr(e);
4 for all v ∈ E0 which is not a sink we have pv =

∑
e:s(e)=v ses

∗
e.

Since E is row-finite the sum in (4) above is finite.

For H = `2(∂E) we have Pv, Se 6= 0, so there is always a non-degenerate
Cuntz-Krieger E-family.
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Cuntz-Krieger relations III

Let {s, p} be a non-degenerate Cuntz-Krieger E-family then:

For any path α = α1 · · ·αn in En, then sα := sα1 · · · sαn is a nonzero
partial isometry. In our example we have (SaSb)δw1 = δab = Sabδw1 and
(ScSd)δw1 = δcd = Scdδw1 .

We may similarly define the partial isometry s∗α = s∗αn
· · · s∗α1

.

For any paths α, β in E∗ with r(α) = r(β) the map sαs
∗
β is a nonzero

partial isometry. In our example (SbS
∗
d)δd = δb and (ScdS

∗
b )δb = δcd.

Any finite product of {pv, se : v ∈ E0, e ∈ E1} can be written as a finite
sum of elements of the form sαs

∗
β where α, β ∈ E∗ with r(α) = r(β).

Hence

C∗({s, p}) = span

{ ∑
Finite

sαs
∗
β

}
in particular C∗({s, p}) has a countable dense subset – that is, it is
separable.
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The C∗-algebra associated to our example

w1

w2

w3

w4
c

b

d aE :=

If we identify the partial isometries generated by a
Cuntz-Krieger E-family with the associated matrix units
in M5(C) according to the pattern shown

Pw4 Sa Sab SabS
∗
d SabS

∗
cd

S∗a Pw3 Sb SbS
∗
d SbS

∗
cd

S∗ab S∗b Pw1 S∗d S∗cd
SdS

∗
ab SdS

∗
b Sd Pw2 S∗c

ScdS
∗
ab ScdS

∗
b Scd Sc Pw4


For example

SaS
∗
a + ScS

∗
c = Pw4 , S

∗
dSd = Pw1 , SdS

∗
d = Pw2 ,

SbS
∗
b = Pw3 and S∗bSb = Pw1 .

Hence C∗(S, P ) ∼=M5(C). Notice that we still haven’t defined a graph
C∗-algebra yet. In the next talk we will say why.
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