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Shift spaces

Shift spaces

Let A be a set, usually finite, of symbols, called the alphabet.

Let A∗ denote the Kleene Star of A, which consists of words or finite
strings of symbols drawn from A.

The full A-shift is the set AZ together with the shift map σ : AZ → AZ

defined by
(σx)n = xn+1 n ∈ Z.

A shift space is a closed, shift invariant subset of AZ.

A shift space X ⊂ AZ can be described by giving a list F ⊂ A∗ of
forbidden words that is

X = XF := {y ∈ AZ : no subword of y contains an element of F}.

The shift spaces (X1, σ1), (X2, σ2) are conjugate if there is a
homeomorphism h : X1 → X2 such that h ◦ σ1 = σ2 ◦ h.
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Shift spaces

Shifts of finite type

Definition 1

A shift space X over a finite alphabet A is of finite type if it may be
described using a finite list of forbidden words.

Example 2

Let E = (E0, E1, r, s) be a row-finite directed graph with no sinks or sources
and E0 finite. Let

XE = {x ∈ (E1)Z : r(xi) = s(xi+1)}
then XE is a shift of finite type with F = {ef : r(e) 6= s(f)}. The shift

space XE is called the edge shift associated to E.
We differ here from the usual convention in symbolic dynamics that XE
consists of bi-infinite paths in E running from left to right.

Theorem 3 (Folklore)

Let X be a shift of finite type, then there is a directed graph E such that X
is conjugate to XE .
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Shift spaces

Conjugacy of shifts

One of the most basic examples of a conjugacy is to take shift space and
create a new shift using an alphabet which consists of words of a fixed length
in the original shift, this process is called a higher-block code, which can
easily be seen for shifts of finite type.

Example 4

Let E = (E0, E1, r, s) for m ≥ 0 let E(m,m+ 1) = (Em, Em+1, r, s) where

r(α1 . . . αm+1) = α2 . . . αm+1 and s(α1 . . . αm+1) = α1 . . . αm.

Then XE is conjugate to XE(m,m+1). For instance if E is the graph

va b , then E(1, 2) is the graph a baa bb

ab

ba

.
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Shift spaces

Congugacy and graph C∗-algebras

Theorem 5 (see [1])

Let E be a row-finite graph with no sources and m ≥ 0. Let (s, p) be a
Cuntz-Krieger E-family generating C∗(E). For α ∈ Em and β ∈ Em+1 set
Tβ := sβs

∗
β2...βm+1

, Qα = sαs
∗
α. Then {T,Q} is a Cuntz-Krieger

E(m,m+ 1) family in C∗(E) and the map
πT,Q : C∗(E(m,m+ 1))→ C∗(E) is an isomorphism.

Example 6

If E is the graph va b , then C∗(E) ∼= C∗(E(1, 2)) where E(1, 2) is

the graph a baa bb

ab

ba

.
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Conjugacy and graph C∗-algebras II

It can be shown that the shifts of finite type XE and XF associated to
graphs E and F are conjugate if and only if there is a finite sequence of
certain graphical moves transforming E into F (see [10]).
In [2] (see also [8]) it was shown how these moves affect the
corresponding graph C∗-algebras, and for more general moves in [12].

Example 7

The graphs E,F shown below are related via an out-splitting procedure,
where vertex v splits into v1, which emits e, f and v2 which emits g; and so
C∗(E) ∼= C∗(F ).

vE :=

f e

g

v1 v2

e1

f1

g1F :=
e2

f2

g2
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Shift spaces

Flow equivalence of shift spaces

There is a weaker notion of equivalence between shift spaces called
flow-equivalence. For shift of finite type it reduces to inserting (or deleting) a
vertex in an edge, a graphical move called a delay.

. . . . . . ⇔ . . . . . .

Example 8

The graph F is obtained from E by inserting a vertex in the edge f . So XE
and XF are flow equivalent.

vE :=
e f

v1 v2
e1

F :=
f1

f2
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Shift spaces

Flow equivalence and graph C∗-algebras

In [2] and [6] (see also [12]) it was shown that if F is obtained from E by a
delay then C∗(E) and C∗(F ) are Morita equivalent.

Example 9

For the graphs E,F below, C∗(E) and C∗(F ) are Morita equivalent since
the graph F is obtained from E by a delay.

vE :=
e f

v1 v2
e1

F :=
f1

f2
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Shift spaces

Invariants for shift spaces

Let E be a row-finite graph with no sources and r vertices. Define the r × r
vertex matrix AE by

AE(v, w) = #{e ∈ E1 : s(e) = v, r(e) = w}.

Then the Bowen-Franks group associated to the shift of finite type (XE , σE)
is

BF (XE) = coker(1−AtE : Zr → Zr) := Zr/ Im(1−AtE)Zr.

In [5] Bowen and Franks showed that this abelian group is an invariant for
conjugacy and flow equivalence of shifts of finite type.
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Shift spaces

Invariants for graph C∗-algebras

For a C∗-algebra A there are two abelian groups K0(A),K1(A) which are
invariants for Morita equiavlence. Roughly speaking, K0(A) measures the
dimension of projections in A and K1(A) measures the connectivity of the
unitaries in A.

Theorem 10 (see [7], [4])

Let E be a row-finite directed graph with no sinks or sources and r vertices.
Then

K0(C
∗(E)) ∼= coker(1−AtE : Zr → Zr),

K1(C
∗(E)) ∼= ker(1−AtE : Zr → Zr).

In particular we note that K0(C
∗(E)) is the Bowen-Franks group for the shift

of finite type XE .
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Shift spaces

Higher rank graphs

Definition 11 (see [9])

Let k ≥ 1. A higher rank graph, or k-graph, is a countable category Λ
equipped with a degree functor d : Λ→ Nk satisfying the factorisation
property: if d(λ) = m+ n then there exist unique µ and ν such that
d(µ) = m, d(ν) = n and λ = µν.

For k = 1, the category Λ is the path category of a directed graph, and
d is the length function.

For k > 1 we think of Λ as a certain collection of paths in a
multicoloured directed graph.
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Shift spaces

Higher rank graphs II

In [9] it is shown how associate a C∗-algebra to a k-graph.

The class of k-graph C∗-algebras is larger than the class of 1-graph
algebras, containing the AT algebras (see [11]) for k ≥ 2.

Many results which hold for directed graphs (1-graphs) but the
arguments are often more subtle.

Unfortunately some results for k-graph C∗-algebras are not so clear cut:
for instance there is no useful formula for K-theory for k > 2.

12 / 16



Shift spaces

Labelled graphs

A labelled graph (E,L) over a countable alphabet A consists of a directed
graph E together with a labelling map L : E1 → A. Without loss of
generality we may assume that the map L is onto.
For x ∈ XE define L(x) ∈ AZ by

L(x)i = L(xi) for i ∈ Z

A labelled graph (E,L) gives rise to a shift space (X(E,L), σ) by

X(E,L) = {y ∈ AZ : y = L(x) for some x ∈ XE}.

The labelled graph (E,L) is called a presentation of the shift space X if
X = X(E,L).
If L is injective, then (E,L) may be regarded as a directed graph. Every shift
space may be presented by a labelled graph.
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Labelled graphs II

The C∗-algebra C∗(E,L) associated to a labelled graph (E,L) was
introduced in [3].

If the labelling map L : E1 → A is injective then C∗(E,L) is isomorphic
to C∗(E).

If E0 is finite then the shift space X(E,L) is called sofic. In this case it
was shown that in [3] that C∗(E,L) ∼= C∗(E).

There are examples of labelled graph C∗–algebras which are unital but
have infinitely many vertices and countablty generated K0-groups.

The relationship between graph C∗-algebras and labelled graph
C∗-algebras is not fully understood.
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row-finite graphs, New York J. Math. 6 (2000), 307–324.

5 R. Bowen and J. Franks, Homology for zero-dimensional nonwandering
sets, Ann. Math. 106 (1977), 73–92.

6 T. Crisp and D. Gow, Contractible subgraphs and Morita equivalence of
graph C∗-algebras, Proc. Amer. Math. Soc. 135 (2006), 2003-2013.

7 J. Cuntz, A class of C∗-algebras and topological Markov chains II:
Reducible chains and the Ext-functor for C∗-algebras, Invent. Math., 63
(1981) 25–40.

8 D. Drinen and N. Sieben, C∗-equivalences of graphs, J. Operator
Theory, 45 (2001), 209–229.

15 / 16



Shift spaces

References II

9 A. Kumjian and D. Pask, Higher rank graph C∗-algebras, New York J.
Math. 6 (2000), 1–20.

10 D. Lind and B. Marcus, An introduction to symbolic dynamics and
coding. Cambridge University Press., 1995.

11 D. Pask, I. Raeburn, M. Rørdam and A. Sims, Rank-Two Graphs whose
C∗-algebras are direct limits of Circle Algebras, J. Funct. Anal., 239
(2006), 137–178.

12 A. Sørensen, Geometric classification of simple graph algebras,
arXiv:1111.1592).

16 / 16


	Shift spaces

