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A brief history

1977-1981 Seminal papers by Cuntz and Krieger, [2, 4, 3].

1981-1982 Papers by Watatani and Enomoto giving graphical iterpretation,
e.g. [5].

1993-1995 Papers by Mann, Pask, Raeburn and Sutherland on
Doplicher—Roberts algebras and connection with Cuntz-Krieger algebras,
[9, 11].

1996-2000 Papers by Bates, Kumjian, Pask, Raeburn, Renault, Szymanski
developing theory of infinite Cuntz-Krieger algebras and then graph
C*-algebras associated to row-finite directed graphs, [10, 8, 7, 1].

2000-2015 Explosion of interest in graph C*-algebras, generalisation of
earlier results and applications to nonabelian duality, discrete topology.
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Hilbert spaces

An inner-product on a complex vector space V isamap (-,-): VxV — C
such that for all z,y,z € V and A € C we have

* <.%'+)\y, Z) = <:L',Z> + /\<y7 Z)!

° (m,y> = (y, ),
@ (z,x) >0 and (x,z) =0iff z = 0.

An inner-product space carries a norm defined by

]l == vz, z).

A Hilbert space is an inner-product space which is complete with respect to
the norm arising from the inner product. For a more thorough treatment of
Hilbert space and operators on Hilbert space see [?7?].
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Hilbert spaces Il

o Let X be a set, then F'(X), the collection of finitely supported functions
f: X — C, forms a complex vector space under pointwise operations.

o Let (?(X) denote the Hilbert space completion of F(X)

For x € X let §, : X — C be the function which takes the value 1 at x
and is zero otherwise, then 6, € /2(X).

As a vector space £2(X) has basis {§, : z € X}.

If |X| = n then ¢2(X) is isomorphic to C™.

If X =Nthen #(N) ={f:N—=C: > y|f(n)]* < oo}

Let A be a Hilbert space then £(#) denotes the vector space of all linear
maps from H to itself.
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Bounded linear operators

@ Let H be a Hilbert space and T' € L(H), define
1T llop = sup{[|T[| : [|=]| < 1}.

Then T is bounded if ||T||op < 00.
o Let B(H) denotes the subspace of £(#) of all bounded linear maps.
@ || - |lop is @ norm on B(H) and is complete with respect to it.

o If # is finite dimensional then B(H) = L(H), which we may identify with
M, (C) in the usual way.
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o Let H be a Hilbert space then every T' € B(#) has an adjoint
T* € B(H) which satisfies

(Tz,y) = (x, T*y) for all z,y € H.

e If H is finite dimensional, then the adjoint of A € M,,(C) is At, the
conjugate transpose of A.

@ Using properties of the inner product it can be shown that (7%)* =T
and (ST)* =T*S* for all S,T € B(H).

@ By Theorems of Gelfand, Neumark and Segal (see [6],[13]) it can be
shown that a C*-algebra can be thought of a norm-closed *-subalgebra
of B(H) for some Hilbert space H.
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Projections

@ Let H be a Hilbert space, then projection is a bounded linear map
P :H — H such that P = P* = P2

@ There is a one-one correspondence between projections and closed
subspaces of H.

@ Projections P, () are mutually orthogonal if PQQ = QP = 0.

Example 1

The matrix
A= ( (1) 8 ) is a projection in M(C).
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Partial isometries

@ Let H be a Hilbert space, then partial isometry is a bounded linear map
S :H — H such that S = SS*S (equivalently SS*, S*S are projections).

@ A partial isometry S is named as such because for every x in S*S(H),
the domain of S, we have || Sz| = ||z|. Thatis, S is an isometry from
S*S(H) to SS*(H), the range of S.

@ Every projection is a partial isometry.

Example 2

The matrix A = ( 8 L ) € M5(C) is a partial isometry,

0

: : — 0 — 0 0
with domain projection 0 and range projection 01 )
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Unitaries

@ Let H be a Hilbert space then a unitary is a bounded linear map
U :H — H such that UU* = U*U = 1y, the identity map on H.

@ Every unitary is a partial isometry.

@ The spectrum o(U) = {\ € C: U — A1y is not invertible } of a unitary
is a closed subset of T = {z € C: |z| = 1}.

@ A partial unitary is a partial isometry, S which has the same range and
domain, that is §*S = §5™.

Example 3

The matrix

1 0
with spectrum o(A) = {1} C T.

A= ( 01 ) € M(C) is a unitary
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Directed graphs

A directed graph E = (E°, E',r, s) consists of a countable set E? of vertices,
a countable set E' of edges, and maps 7, s : E' — EY giving the direction of

each edge.
e

s(e) e 7(€)

A path in E of length n > 1 is a sequence v = a - - - ov, of edges such that
r(a;) = s(ajy1) fori=1,...,n— 1.

f(az’) i 7(cv)

s(ait1) it r(@it1)

Such « is said to have length n, the set of paths in E of length n is denoted
E™. We set r(a) = r(e,) and s(a) = s(e1). Note: There is another
convention where paths run from right to left to mimic the order of
composition of operators. This “Australian” convention was first used around
2004 (see [12]).
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Graph terminology

o If v € E¥ then we define 7(v) = s(v) = v.
o v € EV is a sink if it emits no edges (s~ (v) = 0).
e v € EY is a source if it receives no edges (r~1(v) = 0).

o E is row-finite if each vertex has finite out-valency, i.e. [s~!(v)| < oo for
all v e E°.

Let E* = U,>0E™ denote the set of finite paths in E.
A path o € E™ where n > 1 is a cycle if r(a) = s(«).

A infinite path is an infinite sequence x = (z;);>1 of edges such that
r(x;) = s(wi41) for all i > 1. We set s(z) = s(x1). The set of infinite
paths in E' is denoted E°°.

@ A boundary path in E is either an infinite path z € E* or o € E* with
r(a) a sink. We denote the set of boundary paths in E by OF.

Every element of OF has a well-defined source vertex.
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Consider the following directed graph,

(&
WY +— WY

W] «— W3

The graph FE is row-finite, with sink at w; and source at wy. The boundary
paths are
OF = {ab,cd,b,d, w1}
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The boundary path representation of a graph

o We may define {P, : v € E} on (?(OFE) by

P, — 0r if v=s(x),
0 otherwise.

e We may define {S, : e € E'} on (2(0F) by
dex  if x is not a source and r(e) = s(x),
Sedr = < 0, if z is a source and s(e) = z,
0 otherwise.
o We may define {S! : e € E'} on (2(OF) by
dy if z is not a sink and z = ey,
Sedz = 0p(¢) if x=eand r(e)is a sink,
0 otherwise.

Since {6, : ¥ € OE} is a basis for £2(OF) these formulas determine a
linear maps P,, S., S¥ : /2(OF) — (*(OF) which are bounded.
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Cuntz-Krieger relations |

For any graph E

e The maps {P, : v € E°} are mutually orthogonal projections.
In our example, for instance

Pw45ab = 6ab Pw45cd = 5cd szfsd = 5d ng(;b = 61) Pw15w1 = 6w1-

Py Py, dap = Puydar = 0 since s(ab) = wy # ws, etc.

e The maps {S. : e € E'} are partial isometries.
In our example, for instance we have

(SQS;Sa)éb = 5ab and Saéb = 6ab~

o Forany f € E' we have S}S; = Py(p).
In our example, for instance we have

(S28¢)0wy = Owy and Py 6wy = PuyOwy = Ousy-
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Cuntz-Krieger relations |l

e For v € EY which is not a sink we have P, = D ers(e)mv SeSe-

In our example, for instance for wy € E° we have
(Sas;; + SCS:)(éab + 5cd) = 5ab + (5cd = Pw4 (5ab + 5cd)-

Let £ be a row-finite graph, then a Cuntz-Krieger E-family {s,p} on a
Hilbert space H consists of

@ mutually orthogonal projections {p, : v € E°};

@ partial isometries {s. : e € E'};

Q for all e € E' we have s}se = py(e);

O for all v € E? which is not a sink we have p, = 3=, (o), Se5:

e

@ Since E is row-finite the sum in (4) above is finite.

o For H = (?(OF) we have P,, S, # 0, so there is always a non-degenerate
Cuntz-Krieger E-family.
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Cuntz-Krieger relations Ill

Let {s,p} be a non-degenerate Cuntz-Krieger E-family then:

@ For any path a = ay - oy in E™, then sq 1= 84, -+ - Sq,, IS @ NoOnzero
partial isometry. In our example we have (S,55)0w, = dap = Sapdw, and
(Scsd)5w1 = 5cd = Scd(swl-

e We may similarly define the partial isometry s?, = s7, - s

o

e For any paths «a, 8 in E* with r(a) = r(8) the map a8} is a nonzero
partial isometry. In our example (S357)dq = 0y and (S.q.S; )0y = Oca-

@ Any finite product of {p,,s. : v € EY e € E'} can be written as a finite
sum of elements of the form s,sj where o, 8 € E* with r(a) = r(8).

C*({s,p}) —span{ Z sasﬁ}

Finite

@ Hence

in particular C*({s,p}) has a countable dense subset — that is, it is
separable.
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The C*-algebra associated to our example

If we identify the partial isometries generated by a
Cuntz-Krieger E-family with the associated matrix units
in M5(C) according to the pattern shown

C
W21 Pw4 Sa Sab
E=d| |a S: Py S
Wi +—w3 aw %% Pu
SaS%,  SiS: S
ScdS;kb Scds;; Scd

For example

SabS SapS?,
SpS; S,S%,
S o
Pu, S
Sc P wy

SaSy + 8:5; = Py,, S;Si= Puw,, SaS) = Pu,,

SpSy = Py and S;Sp = Py, .

Hence C*(S, P) = M;5(C). Notice that we still haven't defined a graph

C*-algebra yet. In the next talk we will say why.
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