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Outline of my 5 talks

1 Introduction to étale groupoids
2 Graph groupoids
3 C∗-algebras of groupoids
4 Orbit equivalence and isomorphism of graph groupoids
5 Equivalence of graph groupoids
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Outline of this talk

• The reduced C∗-algebra of a groupoid.
• The universal C∗-algebra of a groupoid.
• Graph C∗-algebras.
• Steinberg algebras.
• Uniqueness theorem and ideals.
• AF algebras and purely infinite algebras.
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The convolution algebra

• Let G be a locally compact Hausdorff étale groupoid.
• If f , g ∈ Cc(G) and η ∈ G, then the set
{(η1, η2) ∈ G(2) : η1η2 = η, f (η1)g(η2) 6= 0} is finite.

• We can therefore define a function f ∗ g : G→ C by

(f ∗ g)(η) :=
∑

η1η2=η

f (η1)g(η2).

• It is not difficult to check that f ∗ g ∈ Cc(G).
• The complex vector space Cc(G) is a ∗-algebra with multiplication given by
∗ and involution given by f∗(η) = f (η−1).

• Cc(G) = span{f ∈ Cc(G) : supp(f ) is a bisection}.
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The left-regular representation

• A ∗-representation of Cc(G) on a Hilbert space H is a linear map
π : Cc(G)→ B(H) such that π(f ∗ g) = π(f )π(g) and π(f∗) = π(f )∗.

• For each x ∈ G(0) there is a ∗-representation πx : Cc(G)→ B(l2(Gx)) such
that πx(f )δη =

∑

α∈Gr(η) f (α)δαη for f ∈ Cc(G) and η ∈ Gx.

• If η ∈ G, then the map Uη : l2(Gs(η))→ l2(Gr(η)) given by Uηδα = δαη−1 is a
unitary operator such that πr(η) = Uηπs(η)U∗η .

• The left-regular representation of G is the representation
πr := ⊕x∈G(0) : Cc(G)→ ⊕x∈G(0)B(l2(Gx)).

Definition

The reduced C∗-algebra C∗
r

(G) of G is the completion of Cc(G) with respect to
the norm || · ||r defined by ||f ||r = ||πr(f )||.
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The left-regular representation

Proposition

There is an injective, norm-decreasing map j : C∗
r

(G)→ C0(G) such that

j(a)(η) = 〈πs(η)(a)δs(η)|δη〉

for a ∈ C∗
r

(G) and η ∈ G. For f ∈ Cc(G), we have j(f ) = f .
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The universal representation

Lemma

If π is a ∗-representation of Cc(G) and f ∈ Cc(G) is supported on a bisector,
then ||π(f )|| ≤ ||f ||∞.

Definition

The universal C∗-algebra C∗(G) of G is the completion of Cc(G) with respect to
the norm || · || defined by ||f || = sup{||π(f )|| : π is a ∗-representation of Cc(G)}.

For f ∈ Cc(G), we have ||f ||∞ ≤ ||f ||r ≤ ||f ||. If f is supported on a bisector, then
||f ||∞ = ||f ||r = ||f ||.
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Graph C∗-algebras

• Let E = (E0, E1, r, s) be a graph.
• If {Pv, Se : v ∈ E0, e ∈ E1} is a Cuntz–Krieger family in a C∗-algebra A, then

there is ∗-representation π : Cc(G(E))→ A such that π(1Z(μ,ν)) = SμS∗ν for
μ,ν ∈ E∗ with r(μ) = r(ν), where Sμ = Sμ1 . . . Sμm if μ = μ1 . . . μm ∈ Em for
m ≥ 1, Sμ = Pμ if μ ∈ E0, Sν = Sν1 . . . Sνn if ν = ν1 . . . νn ∈ En for n ≥ 1, Sν = Pν
if ν ∈ E0.

• Conversely, if π : Cc(G)→ A is a ∗-representation of Cc(G) on a C∗-algebra
A, then {π(1Z(v,v)), π(1Z(e,r(e))) : v ∈ E0, e ∈ E1} is a Cuntz–Krieger family.

• It follows that there is a ∗-isomorphism from C∗(E) to C∗(G(E)) that for
each v ∈ E0 maps pv to 1Z(v,v), and for each e ∈ E1 maps se to 1Z(e,r(e)).
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Amenable groupoids

• There is a notion of amenability for étale groupoids.
• If G is amenable, then the ∗-homomorphism πr : C∗(G)→ C∗

r
(G) is

injective.
• If E is a graph, then G(E) is amenable and C∗

r
(G(E)) = C∗(G(E)).
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Steinberg algebras

• If A,B are compact open bisections, then we let
AB := {η1η2 : η1 ∈ A, η2 ∈ B, s(η1) = r(η2)} and A−1 := {η−1 : η ∈ A}. Then
AB and A−1 are both compact open bisections.

• If A and B are compact open bisections, then ABA = A and BAB = B if and
only if A = B−1.

• An étale groupoid G is ample if its topology has a basis consisting of
compact open bisections.

Definition

Let G be an ample étale groupoid, and let R be a unital commutative ring. The
Steinberg algebra AR(G) of G with coefficient in R, is the R-algebra
spanR{1A : A is a compact open bisection} with multiplication defined by

(f ∗ g)(η) :=
∑

η1η2=η

f (η1)g(η2).
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Leavitt path algebras

If E = (E0, E1, r, s) is a graph and R is a unital commutative ring, then there is
an isomorphism from LR(E) to AR(G(E)) that for each v ∈ E0 maps v to 1Z(v,v),
and for each e ∈ E1 maps e to 1Z(e,r(e)).
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Uniqueness theorems

• If H is an open subgroupoid of G, then H is locally compact Hausdorff and
étale, and the inclusion of Cc(H) into Cc(G) extends to an inclusion of C∗

r
(H)

into C∗
r

(G).
• G(0) and Iso(G)◦ are open subgroupoids of G, so we can consider
C∗
r

(G(0)) = C0(G(0)) and C∗
r

(Iso(G)◦) to be C∗-subalgebras of C∗
r

(G).
• If ϕ : C∗

r
(G)→ A is a ∗-homomorphism that is injective on C∗

r
(Iso(G)◦), then

ϕ is injective.
• If G is effective and ϕ : C∗

r
(G)→ A is a ∗-homomorphism that is injective on

C0(G(0)), then ϕ is injective.
• If G is ample, R is a unital commutative ring, and π : AR(G)→ A is a ring

homomorphism that is injective on AR(Iso(G)◦), then π is injective.
• If G is ample and effective, R is a unital commutative ring, and
π : AR(G)→ A is a ring homomorphism that is injective on AR(G(0)), then π is
injective.
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Invariant subsets, ideals and quotients

• If U is an open invariant subset of G(0), then G|U is a subgroupoid of G and
C∗
r

(G|U) is an ideal in C∗
r

(G).

• Moreover, G(0) \U is a closed invariant subset of G(0) and there is a
surjective ∗-homomorphism π : C∗

r
(G)→ C∗

r
(G|G(0)\U) such that

π(f ) = f |G(0)\U for f ∈ Cc(G), and

0 −→ C∗
r

(G|U)
ι−→ C∗

r
(G)

π−→ C∗
r

(G|G(0)\U) −→ 0

is exact if G is amenable.
• We say that G is strongly effective if G|W is effective for all closed invariant

subsets W of G(0).
• If G is amenable and strongly effective, then U 7→ C∗

r
(G|U) is a bijection

between the set of open invariant subsets of G(0) and the ideals in C∗
r

(G).
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Invariant subsets, ideals and quotients

• If G is ample, R is a unital commutative ring, and U is an open invariant
subset of G(0), then there is an exact sequence

0 −→ AR(G|U)
ι−→ AR(G)

π−→ AR(G|G(0)\U) −→ 0

• If G is ample and strongly effective, and K is a field, then U 7→ AK(G|U) is a
bijection between the set of open invariant subsets of G(0) and the ideals
in AK(G).
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Cocycles, gradings, and group actions

• Let Γ be an abelian group. A cocycle from G to Γ is a map c : G→ Γ such
that c(η−1) = c(η)−1 for η ∈ G, and c(η1η2) = c(η1)c(η2) for (η1, η2) ∈ G(2).

• A continuous cocycle c : G→ Γ induces a Γ-grading {c−1(γ)}γ∈Γ of G (i.e.,
⋃

γ∈Γ c
−1(γ) = G, c−1(γ1) ∩ c−1(γ2) = ∅ for γ1 6= γ2, and η1η2 ∈ c−1(γ1γ2) if

(η1, η2) ∈ G(2), η1 ∈ c−1(γ1), and η2 ∈ c−1(γ2)).
• It also induces a Γ-grading {AγR(G)}γ∈Γ of the Steinberg algebra AR(G) of G,

where A
γ
R(G) = {f ∈ AR(G) : supp(f ) ⊆ c−1(γ)}.

• And a strongly continuous action βc : bΓ→ Aut(C∗(G)) such that βc
ϕ

(f ) = ϕ(γ)f

for ϕ ∈ bΓ, γ ∈ Γ and f ∈ Cc(G) with supp(f ) ⊆ c−1(γ).

T.M. Carlsen Graph groupoids and C∗-algebras Lecture 3/5 Page 14/18



The gauge action

• The map (x, k, y) 7→ k is a continuous cocycle from G(E) to Z.
• We thus have a Z-grading {Gk(E)}k∈Z of G(E) where
Gk(E) = {(x, l, y) ∈ G(E) : l = k}.

• A strongly continuous action β : T→ Aut(C∗(E)) such that
βγ(sμs∗ν ) = γ|μ|−|ν|sμs∗ν for γ ∈ T and μ,ν ∈ E∗.

• And a Z-grading {Lk
R

(E)}k∈Z of LR(E) where
Lk
R

(E) = spanR{μν∗ : μ,ν ∈ E∗, |μ| − |ν| = k}.
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Invariant and graded ideals

• Let Γ be an abelian group and c : G→ Γ a continuous cocycle. If c−1(0) is
amenable and strongly effective, then U 7→ C∗

r
(G|U) is a bijection between

the set of open invariant subsets of G(0) and the set of βc-invariant ideals
in C∗

r
(G).

• c−1(0) is amenable and strongly effective and ϕ : C∗
r

(G)→ A is a
∗-homomorphism that is injective on C0(G(0)) and for which there is an
action α : bΓ→ A such that ϕ ◦ βc

ζ
= αζ ◦ ϕ for all ζ ∈ bΓ, then ϕ is injective.

• If G is ample, c−1(0) is strongly effective, and K is a field, then U 7→ AK(G|U)
is a bijection between the set of open invariant subsets of G(0) and the set
of Γ-graded ideals in AK(G).

• If G is ample, c−1(0) is strongly effective, K is a field, and π : AR(G)→ A is a
Γ-graded ring homomorphism that is injective on AR(G(0)), then π is
injective.
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AF algebras

• If G is an AF groupoid, then G is amenable and ample, C∗(G) is an AF
algebra and AR(G) is an ultramatricial algebra.

• So if E is a graph with no loops, then C∗(E) is an AF algebra and LR(E) is an
ultramatricial algebra.
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Purely infinite algebras

• If G is effective and locally contracting, then C∗
r

(G) is purely infinite.
• So if E is a graph such that every vertex in E connects to a loop with an

exit, then C∗(E) is purely infinite.
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