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Another example

Example 1

Let F be the directed graph v O e

A Cuntz-Krieger F-family {s.,p,} satisfies scs’ = p, = sks.; so py is the
identity which makes s, a unitary.

Here OF = F*° = {ece...}, so *(OF) = C. Then the boundary path
representation has S, = S} = P,, so C*(S, P) = C.

@ In this example there is more than one non-degenerate Cuntz-Krieger
F-family. In fact lots.

e If X is any closed subset of T then C(X) the space of continuous
functions on X acts by multiplication on L?(X) the Hilbert space of
square integrable functions on X. If we define (Q,f)(z) = f(z) and
(T.f)(2) = zf(2) for f € L*(X) then T.TF = Q, = T:T. so {T,Q} is a
Cuntz-Krieger F—family and C*(T, Q) = C(X).

@ The boundary path F-family in Example 1 corresponds to taking
X={1}cT 2/14



Universal C*-algebra

The Cuntz-Krieger relations for F' in Example 1 imply that s, is a unitary — so
there are lots of Cuntz-Krieger F-families, generating different C*-algebras.
To circumvent this problem we use a universal property to define the
(C*-algebra associated to a directed graph.

Theorem 2 (Existence of universal algebra — see [1],[9],[2])

Let E be a row-finite directed graph. There is a C*-algebra C*(E) generated
by a Cuntz-Krieger E-family {s,p} such that if {T,Q} is a Cuntz-Krieger
E-family in a C*-algebra B then there is a x-homomorphism

nr.q : C*(E) — B such that m7.g(py) = Qv and mrg(se) = Te.

We may now define C*(E) to be the universal C*-algebra generated by a
Cuntz-Krieger E-family. The universal part of the definition ensures that we
take the “largest” C*-algebra generated by s Cuntz-Krieger E-family. For the
graph F'in Example 1, we have C*(F') = C(T), the largest C*-algebra
generated by a unitary (with spectrum T).
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Cuntz-Krieger algebras — early days

@ In [5] Cuntz and Krieger study a C* -algebra A associated to a square
0-1 matrix A = (aj;);';—; with no zero rows or columns. In the presence
of a condition they call (1) their algebra has the required universal
property and hence define O4.

e Following [1] we now define the Cuntz-Krieger algebra O 4 be the

universal C*-algebra generated by a family s1, ..., s, of partial isometries
satisfying
n
* * - .
8;8; = Zaijsjsj Cuntz-Krieger relation. (1)
=1

@ What is the link with graph C*-algebras?

o For a square 0-1 matrix A = (a;;);';_; with no zero rows or columns
define a directed graph E4 by ES = {1,...,n}, EY = {ij : a(i,j) = 1}
and s(ij) =1, r(ij) = j.
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Cuntz-Krieger algebras — early days |l

@ Since the matrix A has no zero rows or columns the directed graph F4
has no sinks or sources.

o Let {s1,...,8,} be partial isometries satisfying the Cuntz-Krieger
relation (1) for A then for 1 <4, j < n we may define

* *
Q; = s;8; and Tj; = 5iSjS; where a;; = 1,

@ One checks that {7, @} is a Cuntz-Krieger E4 family in O4. So by the
universal property of C*(FE 4) given in theorem 2 there is a map
mr.g : C*(Ea) = O4. Is it an isomorphism? In particular how can we
tell if the map is injective? There are two theorems which help us, which
we will discuss next.

@ This graphical approach Cuntz-Krieger algebras was spotted in the 1980's
by Enomoto and Watatani in [6], and we will come back to it again soon.
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The gauge action

Proposition 3 (see [1],[2] )

Let E be a row-finite directed graph. Then there is a strongly continuous
action vy of T on C*(E) such that v,(s.) = zs. and v,(py) = py-

The existence and importance of the gauge action on C*(E) can be traced
back to the original paper of Cuntz and Krieger (see [5]).

Theorem 4 (Gauge-Invariant Uniqueness Theorem — see [1],[2])

Let E be a row-finite directed graph and suppose that {T,Q} is a
Cuntz-Krieger E-family in a C*-algebra B with Q, # 0 for all v € EV. If
there is a continuous action 3 : T — Aut(B) such that

ﬁz(Te) - ZTe and /BZ(Q’U) - QU (2)

then mr g : C*(E) — C*(T, Q) is an isomorphism.

The next slide shows a typical application of the gauge-invariant uniqueness

theorem.
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Gauge Invariant Uniqueness Theorem Il

Let £ = (E° E' r, s) be a row-finite directed graph with no sources. Define
E(1,2) = (EY, E%,7',s") where

s'(ef) =eand r'(ef) = f.

Corollary 5 (see [2])

Let E be a row-finite graph with no sources, then C*(E) = C*(E(1,2)).

Sketch proof.

Let (s,p) be the universal Cuntz-Krieger family generating C*(E). Define

Qe = Sesg, Tef = sesys}, then {T',Q} is a Cuntz-Krieger E(1,2)-family.
Since the s, are nonzero partial isometries the ). are nonzero projections.
One checks that the map 77 ¢ intertwines the gauge actions on C*(E) and
C*(E(1,2)), so Theorem 4 implies that 77 ¢ is injective. Since E has no
sources we can show that s, p, lie in the range of 71 g, and so it is
surjective. []
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Gauge Invariant Uniqueness Theorem Il|

@ An argument similar to Corollary 5 shows that O4 = C*(Ey4). So every
Cuntz-Krieger algebra is a graph C*-algebra, what about the converse?
We need to deal with finite graphs which have multiple edges.

e For a finite graph E, the E' x E' edge matrix B, is defined by

1 ifr(e) = s(f),

0 otherwise.

BE(B,f) = {

@ Suppose that E has no sinks and sources, then since E°, E' are finite it
follows that By is a square 0-1 matrix with no zero rows or columns.

@ Observe that Ep, = E(1,2), then we have
C*(E)=C*(E(1,2)) 2 C*(Ep,) = OB,

@ Hence every finite graph C*-algebra is isomorphic to a Cuntz-Krieger
algebra.
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Gauge Invariant Uniqueness Theorem IV

How does the gauge-invariant uniqueness theorem deal with graphs which
have many Cuntz-Krieger families?

Example 6

Recall the graph F' from Example 1.
O
It was shown that there is a Cuntz-Krieger F-family {T', @} with
C*(T, Q) = C whereas C*(F) = C(T). Certainly @, # 0, however since the

spectrum of T is not all of T there is no action 5 of T on C*(T,Q) = C
which satisfies

ﬂz(Te) = 2l and ﬁz(Qv) — Qv-

Hence the Gauge Invariant Uniqueness Theorem (Theorem 4) cannot be used
to deduce that 77 ¢ is an isomorphism unless the unitary T, has spectrum T,
that is when C*(T,Q) = C(T).
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Cuntz-Krieger Uniqueness Theorem

Cuntz and Krieger prove a universal result for matrices A satisfying a
condition they call (1). What it the graphical analogue?

Let E be a directed graph. A cycle « € E™, n > 1 has an exit if there is
1<j<nande#a; € E'such that s(e) = s(a;j_1).

pe-—---o

/7

/7

/
/
/
Y»
[

Note: We allow r(e) = 7(c;). The property that every cycle has an exit is
often known as condition (L) (see [8]).
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Cuntz-Krieger Uniqueness Theorem ||

Theorem 8 (Cuntz-Krieger Uniqueness Theorem)

Let E be a directed graph in which every cycle has an exit. Let {T,Q} be a
Cuntz-Krieger E-family in a C*-algebra B such that Q, # 0 for every v € E°.

Then the homomorphism w1 g : C*(E) — B is an isomorphism of C*(E)
onto C*(T, Q).

@ Theorem 8 is named after a similar result in [5] for Cuntz-Krieger
algebras which were not originally defined by a universal property.

@ The version of Theorem 8 in [5] says that if A satisfies condition (I) then
all C*-algebras generated by partial isometries satisfying (1) are
isomorphic.

o If A satisfies condition (1) then every cycle in E4 has an exit and the

Cuntz-Krieger Uniqueness Theorem gives us an alternative proof that
C*(Ea) =2 04 = A given earlier.
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Cuntz-Krieger Uniqueness Theorem |V

How does the Cuntz-Krieger uniqueness theorem deal with graphs which have
many Cuntz-Krieger families?

Example 9

Recall the graph F' from Example 1.
(O

In Example 1 there is a Cuntz-Krieger F-family {T',Q} with C*(T,Q) = C
whereas C*(F) = C(T). Certainly Q, # 0, however the loop e does not have
an exit and so the Cuntz-Krieger uniqueness theorem does not apply, and we
cannot use it to show that C*(T, Q) = C(T).
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