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Another example

Example 1

Let F be the directed graph . ev

A Cuntz-Krieger F -family {se, pv} satisfies ses
∗
e = pv = s∗ese; so pv is the

identity which makes se a unitary.
Here ∂F = F∞ = {eee . . .}, so `2(∂F ) = C. Then the boundary path
representation has Se = S∗e = Pv, so C∗(S, P ) ∼= C.

In this example there is more than one non-degenerate Cuntz-Krieger
F -family. In fact lots.
If X is any closed subset of T then C(X) the space of continuous
functions on X acts by multiplication on L2(X) the Hilbert space of
square integrable functions on X. If we define (Qvf)(z) = f(z) and
(Tef)(z) = zf(z) for f ∈ L2(X) then TeT

∗
e = Qv = T ∗e Te so {T,Q} is a

Cuntz-Krieger F–family and C∗(T,Q) ∼= C(X).
The boundary path F -family in Example 1 corresponds to taking
X = {1} ⊂ T. 2 / 14



Universal C∗-algebra

The Cuntz-Krieger relations for F in Example 1 imply that se is a unitary – so
there are lots of Cuntz-Krieger F -families, generating different C∗-algebras.
To circumvent this problem we use a universal property to define the
C∗-algebra associated to a directed graph.

Theorem 2 (Existence of universal algebra – see [1],[9],[2])

Let E be a row-finite directed graph. There is a C∗-algebra C∗(E) generated
by a Cuntz-Krieger E-family {s, p} such that if {T,Q} is a Cuntz-Krieger
E-family in a C∗-algebra B then there is a ∗-homomorphism
πT,Q : C∗(E)→ B such that πT,Q(pv) = Qv and πT,Q(se) = Te.

We may now define C∗(E) to be the universal C∗-algebra generated by a
Cuntz-Krieger E-family. The universal part of the definition ensures that we
take the “largest” C∗-algebra generated by s Cuntz-Krieger E-family. For the
graph F in Example 1, we have C∗(F ) ∼= C(T), the largest C∗-algebra
generated by a unitary (with spectrum T).
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Cuntz-Krieger algebras – early days

In [5] Cuntz and Krieger study a C∗ -algebra A associated to a square
0-1 matrix A = (aij)

n
i,j=1 with no zero rows or columns. In the presence

of a condition they call (I) their algebra has the required universal
property and hence define OA.

Following [1] we now define the Cuntz-Krieger algebra OA be the
universal C∗-algebra generated by a family s1, . . . , sn of partial isometries
satisfying

s∗i si =

n∑
j=1

aijsjs
∗
j Cuntz-Krieger relation. (1)

What is the link with graph C∗-algebras?

For a square 0-1 matrix A = (aij)
n
i,j=1 with no zero rows or columns

define a directed graph EA by E0
A = {1, . . . , n}, E1

A = {ij : a(i, j) = 1}
and s(ij) = i, r(ij) = j.
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Cuntz-Krieger algebras – early days II

Since the matrix A has no zero rows or columns the directed graph EA

has no sinks or sources.

Let {s1, . . . , sn} be partial isometries satisfying the Cuntz-Krieger
relation (1) for A then for 1 ≤ i, j ≤ n we may define

Qi = sis
∗
i and Tij = sisjs

∗
j where aij = 1,

One checks that {T,Q} is a Cuntz-Krieger EA family in OA. So by the
universal property of C∗(EA) given in theorem 2 there is a map
πT,Q : C∗(EA)→ OA. Is it an isomorphism? In particular how can we
tell if the map is injective? There are two theorems which help us, which
we will discuss next.

This graphical approach Cuntz-Krieger algebras was spotted in the 1980’s
by Enomoto and Watatani in [6], and we will come back to it again soon.
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The gauge action

Proposition 3 (see [1],[2] )

Let E be a row-finite directed graph. Then there is a strongly continuous
action γ of T on C∗(E) such that γz(se) = zse and γz(pv) = pv.

The existence and importance of the gauge action on C∗(E) can be traced
back to the original paper of Cuntz and Krieger (see [5]).

Theorem 4 (Gauge-Invariant Uniqueness Theorem – see [1],[2])

Let E be a row-finite directed graph and suppose that {T,Q} is a
Cuntz-Krieger E-family in a C∗-algebra B with Qv 6= 0 for all v ∈ E0. If
there is a continuous action β : T→ Aut(B) such that

βz(Te) = zTe and βz(Qv) = Qv (2)

then πT,Q : C∗(E)→ C∗(T,Q) is an isomorphism.

The next slide shows a typical application of the gauge-invariant uniqueness
theorem.
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Gauge Invariant Uniqueness Theorem II

Let E = (E0, E1, r, s) be a row-finite directed graph with no sources. Define
E(1, 2) = (E1, E2, r′, s′) where

s′(ef) = e and r′(ef) = f.

Corollary 5 (see [2])

Let E be a row-finite graph with no sources, then C∗(E) ∼= C∗(E(1, 2)).

Sketch proof.

Let (s, p) be the universal Cuntz-Krieger family generating C∗(E). Define
Qe = ses

∗
e, Tef = sesfs

∗
f , then {T,Q} is a Cuntz-Krieger E(1, 2)-family.

Since the se are nonzero partial isometries the Qe are nonzero projections.
One checks that the map πT,Q intertwines the gauge actions on C∗(E) and
C∗(E(1, 2)), so Theorem 4 implies that πT,Q is injective. Since E has no
sources we can show that se, pv lie in the range of πT,Q, and so it is
surjective.
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Gauge Invariant Uniqueness Theorem III

An argument similar to Corollary 5 shows that OA
∼= C∗(EA). So every

Cuntz-Krieger algebra is a graph C∗-algebra, what about the converse?
We need to deal with finite graphs which have multiple edges.

For a finite graph E, the E1 × E1 edge matrix BE is defined by

BE(e, f) =

{
1 if r(e) = s(f),

0 otherwise.

Suppose that E has no sinks and sources, then since E0, E1 are finite it
follows that BE is a square 0-1 matrix with no zero rows or columns.

Observe that EBE
∼= E(1, 2), then we have

C∗(E) ∼= C∗(E(1, 2)) ∼= C∗(EBE
) ∼= OBE

.

Hence every finite graph C∗-algebra is isomorphic to a Cuntz-Krieger
algebra.
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Gauge Invariant Uniqueness Theorem IV

How does the gauge-invariant uniqueness theorem deal with graphs which
have many Cuntz-Krieger families?

Example 6

Recall the graph F from Example 1.

. ev

It was shown that there is a Cuntz-Krieger F -family {T,Q} with
C∗(T,Q) ∼= C whereas C∗(F ) ∼= C(T). Certainly Qv 6= 0, however since the
spectrum of Te is not all of T there is no action β of T on C∗(T,Q) ∼= C
which satisfies

βz(Te) = zTe and βz(Qv) = Qv.

Hence the Gauge Invariant Uniqueness Theorem (Theorem 4) cannot be used
to deduce that πT,Q is an isomorphism unless the unitary Te has spectrum T,
that is when C∗(T,Q) ∼= C(T).
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Cuntz-Krieger Uniqueness Theorem

Cuntz and Krieger prove a universal result for matrices A satisfying a
condition they call (I). What it the graphical analogue?

Definition 7

Let E be a directed graph. A cycle α ∈ En, n ≥ 1 has an exit if there is
1 ≤ j ≤ n and e 6= αj ∈ E1 such that s(e) = s(αj−1).

αj−1

αj

e

Note: We allow r(e) = r(αj). The property that every cycle has an exit is
often known as condition (L) (see [8]).
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Cuntz-Krieger Uniqueness Theorem II

Theorem 8 (Cuntz-Krieger Uniqueness Theorem)

Let E be a directed graph in which every cycle has an exit. Let {T,Q} be a
Cuntz-Krieger E-family in a C∗-algebra B such that Qv 6= 0 for every v ∈ E0.
Then the homomorphism πT,Q : C∗(E)→ B is an isomorphism of C∗(E)
onto C∗(T,Q).

Theorem 8 is named after a similar result in [5] for Cuntz-Krieger
algebras which were not originally defined by a universal property.

The version of Theorem 8 in [5] says that if A satisfies condition (I) then
all C∗-algebras generated by partial isometries satisfying (1) are
isomorphic.

If A satisfies condition (I) then every cycle in EA has an exit and the
Cuntz-Krieger Uniqueness Theorem gives us an alternative proof that
C∗(EA) ∼= OA

∼= A given earlier.
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Cuntz-Krieger Uniqueness Theorem IV

How does the Cuntz-Krieger uniqueness theorem deal with graphs which have
many Cuntz-Krieger families?

Example 9

Recall the graph F from Example 1.

. ev

In Example 1 there is a Cuntz-Krieger F -family {T,Q} with C∗(T,Q) ∼= C
whereas C∗(F ) ∼= C(T). Certainly Qv 6= 0, however the loop e does not have
an exit and so the Cuntz-Krieger uniqueness theorem does not apply, and we
cannot use it to show that C∗(T,Q) ∼= C(T).
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