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Crossed products

An action of G on a C*-algebra A is a homomorphism a : G — Aut(A)
giving rise to a C*—dynamical system (A, «a, G).

A covariant representation of (A, «, G) in a C*-algebra B is a pair (¢, ) of
maps ¢ : A — M(B), 7 : G — UM(B) such that

P(ag(a)) = m(g)i(a)m(g)*

The crossed product A x, G is generated by a universal covariant
representation of (A, «, G).

When G is abelian, the crossed product A x, G, carries a natural action & of
G.

2/17



Coactions

When G is nonabelian, there is a dual coaction & of G on A x,, G.

A coaction of G on a C*-algebra A is an injective nondegenerate
homomorphism 6 : A - A ® C*(G) such that (6 ® id) 0§ = (Id® ) 0 .
Where ¢ is the canonical coaction of G on C*(G).

There is a notion of a covariant representation of (A, d, G) however it is a bit
technical.

The crossed product A x5 G is generated by a universal covariant
representation of (A, d, G) carrying a natural dual action ¢ of G.
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Nonabelian Duality

Theorem 1 (Takesaki, Takai)

Let A be a C*-algebra and G a group.
(1) Let o be an action of G on A, then the dual coaction & of G on A X, G
such that
(A xoG) x5 G = ARK(LAQ)).
(2) Let & be a coaction of G on A, then the dual action § of G on A x5 G

such that
(A x5 G) x5 G = A® K(L*(G)).
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Group actions on directed graphs

A graph morphism ¢ : E — F is a pair ¢ = (¢°, ¢') of maps ¢’ : E* — F*
for i = 1,2 such that for all e € E!

s(¢'(e)) = ¢°(s(e)) r(o'(e)) = ¢°(r(e))

An action of a group G on a directed graph F is a group homomorphism
a: G — Aut(E).

Forve E® and e € E! let
[u]:{UEEO:v:aguforsomegEG}
[e] = {f € E :f:a;e for some g € G}.
If we put E°/G = {[u] : uw € E°}, E'/G = {[e] : e € E'} and set
r(le]) = [r(e)]  s'(e]) = [s(e)] for [e] € E/G
then E/G = (E°/G,E'/G,r",s) is a directed graph, called the quotient
graph.
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By the universal property of C*(E) an action « of G on E induces an action
of G on E* which transforms a Cuntz—Krieger E—family (s,p) in a
C*—algebra B into a Cuntz—Krieger E—family (soa,po «) in B.

By the universal property of C*(E), this induces an action «,. of G on
C*(FE). Hence we may form the crossed product C*—algebra C*(E) x,, G.
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Free actions, skew product graphs

The action « of G on E' is free if 0421) = for all v € E° then g = 1g.

Let F be a directed graph, G a group and ¢ : E' — G a function. The
skew—product graph E x. G has vertices E x G, edges E' x G and range
and source maps

r(e,g) = (r(e), ge(e))  s(e,g) = (s(e), g)-
There is a natural free action A of G on E x. G given by
N (z,9) = (z,hg) for i = 0,1 and h € G.

The quotient (E X, G)/G is isomorphic to E.
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Gross—Tucker Theorem

The Gross—Tucker Theorem says that the situation on the previous slide is
generic: if a group acts freely on a graph it is acting on a skew—product graph.

Theorem 3 (Gross—Tucker)

Let E be a directed graph and a a free action of a group G. Let

n:(E/G)? — E° be a section for the quotient map ¢° : E° — (E/G)°, then
there is a function ¢, : (E/G)' — G such that (E/G) x., G is equivariantly
isomorphic to E.
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Back to graph algebras

Theorem 4 (see [2],[3])

Let E be a row-finite directed graph with no sources and G a countable
group.
(1) Let « be a free action of G on E, then
C*(E) xXqo, G2 C*(E/G) ® K(*(Q)). Indeed
C*(E) Xq, G ~me C*(E/G).
(2) Letc: E' — G be a function, then
C*(E x.G) x), G = C*(E) ® K(3(G)).

The connection between Theorem 4 and Theorem 1 is explained by:

Theorem 5 (see [1])

Let E be a row-finite directed graph with no sources, G a group and
c: E' — G a function. Then there is a coaction §. of G on C*(E) such that
C*(E) xs, G is equivariantly isomorphic to C*(E x.G).
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Trees

Recall that a connected directed graph is a tree if it is simply connected.
Let T" be a row-finite tree with no sources, so there are no finite boundary
paths. Define an equivalence relation on 0T by

x ~y if there is k € Z and N > 1 such that z;,; = y; for i > N.

Let AT = 0T/ ~ be the set of equivalence classes, which we call the
boundary of T, and denote the quotient map x +— [z] by ¢.

Let v € TV, define Y (v) = {[z] € X : s(x) = v}.

For u # v € T° the set Y (u) N Y (v) is nonempty if and only if the unique
walk from v to u is an undirected path of the form aS~! for some a5 € T*:
in which case Y (u) NY (v) = Y (w) where w = s(«).
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The C*-algebra of a tree

Lemma 7 (see [2])

Let T be a row-finite tree with no sources. Then {Y (v) :v € T°} forms a
basis of compact open sets for the quotient topology on AT := 9T/ ~. The
map ¢ : 0T — AT is a local homeomorphism and AT is Hausdorff.

The space AT is compact if E¥ is finite and is locally compact otherwise.

Theorem 8 (see [2])

Let T be a row-finite tree with no sources. Then C*(T') is Morita equivalent
to Cy(AT), the abelian C*-algebra consisting of continuous complex valued
functions on AT which vanish at infinity.
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Some discrete topology

o Let F be a connected directed graph, that is for any two vertices
u,v € EY there is an undirected path from u to v.

o Let T be a maximal spanning tree for E; so T is a subgraph of E such
that 7° = E° and T is simply connected. The existence of T is
equivalent to the axiom of choice.

e Fix v € E°. For each e € E\T" let ju. denote the unique reduced walk
in T from v to s(e) followed by e then the unique reduced walk in T
from r(e) to v; so pe € T (E,v).

Let E be a connected directed graph, T' a maximal spanning tree and
{pe : € € EI\T'} as above. Then

m1(E,v) 2 (e : e € EN\TY),

In particular if E is row-finite and E° is finite 71(FE,v) is a free group of
order |Et| — |E%| — 1.
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@ The maximal spanning tree of the graph a C v D b consists of just

the vertex v. Since the edges a, b are not in the maximal spanning tree
the fundamental group of this graph is isomorphic to, o, the free group
on two generators, a and b.

: . e .
@ The maximal spanning tree of the graph C ° e consists of
V\/

both vertices and the edge e. The fundamental group is then isomorphic
to Fs.

@ The maximal spanning tree of the graph C o . j consists

V\_/
of both vertices and the edge e. The fundamental group is then

isomorphic to F3.
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Universal covering tree

Let F be a connected, directed graph with no sources, T" a maximal spanning
tree and p. € 71 (E,v) as on the previous slide. Define ¢ : E* — m1(E,v) by

e ifee ENT!
e(e) = {“ fee
) otherwise.

Form the skew product graph Z = E x.m(E,v) where Z° = E x 1((E,v),
Z' = E' x 71(E,v) and

r(e,g) = (r(e), c(e)g) and s(e, g) = (s(e), 9).
Then Z has no sources, is simply connected and is isomorphic to the
universal covering tree of E. Moreover, Z carries a free right action rt of
m1(E,v) given by

(679) h = (eagh)

We may then form the quotient graph Z /71 (E,v) with vertices Z° /71 (E,v),
edges Z'/mi(E,v) and range and source maps given by

r(le]) = [r(e)] and s([e]) = [s(e)].

One may show that Z/71(E,v) is isomorphic to E.
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The graph a C v 3 b has fundamental group Fo = (a,b) and universal

covering tree:

4 4 T 4 4
— (v,a72) — (v,a~ ) — (v,v) (v,a) > (v,a?) —»
4 4 T 4 4
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The C*-algebra of a graph

Theorem 10 (see [2])

Let E be a row-finite directed graph with no sources and Z be its universal
covering tree. Fix v € E° and let w1 (E,v) be the fundamental group of E.
Then

C*(Z) %y m(E,v) is Morita equivalent to Co(AZ) x5 mi(E,v),

where 1t is the induced action of Ty (E,v) on AZ.

Corollary 11 (see [2])

Let E be a row-finite connected with no sources graph and fix v € E°. Then
C*(E) is Morita equivalent to Co(AZ) x5 w1 (£, v) where Z is the universal
covering tree of E and rt is the induced action of w1 (E,v) on AZ.
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