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Outline of my 5 talks

1 Introduction to étale groupoids
2 Graph groupoids
3 C∗-algebras of groupoids
4 Orbit equivalence and isomorphism of graph groupoids
5 Equivalence of graph groupoids
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Outline of this talk

1 The boundary path space of a graph
2 The groupoid of a graph
3 Open invariants sets
4 Cofinal graphs and minimal graph groupoids
5 Effective and topological principal graph groupoids
6 Locally contracting graph groupoids
7 AF graph groupoids
8 Homology of graph groupoids

T.M. Carlsen Graph groupoids and C∗-algebras Lecture 2/5 Page 2/15



The boundary path space of a graph

Let E = (E0, E1, r, s) be a graph.
• We let E0

reg
:= {v ∈ E0 : vE1 is finite and nonempty} and E0

sing
:= E0 \ E0

reg
.

• A finite path in E is an finite sequence e1e2 . . . en of edges in E such that
r(ei) = s(ei+1) for all i. The length of a finite path μ = e1e2 . . . en is |μ| := n.
We let En be all the paths of length n, and let E∗ =

⋃∞
n=0 En. The source and

range maps extends to E∗ in the obvious way.
• An infinite path in E is an infinite sequence x1x2 . . . of edges in E such that

r(ei) = s(ei+1) for all i. We let E∞ be the set of all infinite paths in E. The
source map extends to E∞ in the obvious way. We let |x| =∞ for x ∈ E∞.

• The boundary path space of E is the space

∂E := E∞ ∪ {μ ∈ E∗ : r(μ) ∈ E0
sing
}.

• If μ = μ1μ2 · · ·μm ∈ E∗, x = x1x2 · · · ∈ E∗ ∪ E∞ and r(μ) = s(x), then we let μx
denote the path μ1μ2 · · ·μmx1x2 · · · ∈ E∗ ∪ E∞.
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The boundary path space of a graph

• For μ ∈ E∗, the cylinder set of μ is the set

Z(μ) := {μx ∈ ∂E : x ∈ r(μ)∂E},

where r(μ)∂E := {x ∈ ∂E : r(μ) = s(x)}.
• Given μ ∈ E∗ and a finite subset F ⊆ r(μ)E1 we define

Z(μ \ F) := Z(μ) \
�

⋃

e∈F

Z(μe)

�

.

• ∂E is a locally compact Hausdorff space with the topology given by the
basis {Z(μ \ F) : μ ∈ E∗, F is a finite subset of r(μ)E1}, and each such
Z(μ \ F) is compact and open.

T.M. Carlsen Graph groupoids and C∗-algebras Lecture 2/5 Page 4/15



The boundary path space of a graph

• For n ∈ N0, let ∂E≥n := {x ∈ ∂E : |x| ≥ n}.
• Then ∂E≥n = ∪μ∈EnZ(μ) is an open subset of ∂E.
• For n ≥ 1, we define the n-shift map on E to be the map σn : ∂E≥n→ ∂E

given by σn(x1x2x3 · · ·xnxn+1 . . . ) = xn+1 · · · for x1x2x3 · · ·xnxn+1 · · · ∈ ∂E≥n+1

and σn(μ) = r(μ) for μ ∈ ∂E ∩ En.
• We let σ0 denote the identity map on ∂E.
• Then σn : ∂E≥n→ ∂E is a local homeomorphism for all n ∈ N0.
• When we write σn(x), we implicitly assume that x ∈ ∂E≥n.
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Eventually periodic points

• A loop or a cycle is a path ν ∈ E∗ \ E0 such that r(ν) = s(ν). A loop ν is said
to be simple if there is no other loop ν′ such that ν = ν′ν′ . . . ν′.

• x ∈ ∂E is said to be eventually periodic if there are m,n ∈ N0, m 6= n such
that σm(x) = σn(x). We let

per(x) = min{m− n : m,n ∈ N0, m > n, σm(x) = σn(x)}

if x is eventually periodic, and let per(x) = 0 otherwise.
• x ∈ ∂E is eventually periodic if and only if x = μννν · · · for some path
μ ∈ E∗ and some loop ν ∈ E∗ with s(ν) = r(μ). By replacing ν by a subloop
if necessary, we can assume that ν is a simple loop in which case
per(x) = |ν|.
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The groupoid of a graph

• ∂E is a locally compact Hausdorff space, N0 is a submonoid of the abelian
group Z, and (∂E≥n, σn)n∈N0 is a family of pairs such that each ∂E≥n is an
open subset of ∂E and each σn : ∂E≥E→ ∂E is a continuous local
homeomorphism such that x ∈ ∂E≥m+n if and only if x ∈ ∂E≥n and
σn(x) ∈ ∂E≥m, in which case σm(σn(x)) = σm+n(x).

• We define the groupoid G(E) of E to be the Deaconu–Renault groupoid of
(∂E, (∂E≥n, σn)n∈N0).

• Then G(E) is a locally compact Hausdorff étale groupoid.
• G(E) = {(x, k, y) : there exist m,n ∈ N0 such that x ∈ ∂E≥m, y ∈ ∂E≥n, k =

m− n, σm(x) = σn(y)}.
• r((x, k, y)) = x, s((x, k, y)) = y, (x, k, y)−1 = (y,−k, x), and

(x, k, y)(y, l, z) = (x, k + l, z).
• If x ∈ ∂E, then orb(x) = {y ∈ ∂E : exist m,n ∈ N0 such that σm(x) = σn(y)} and

xG(E)x = {(x,m− n,x) : m,n ∈ N0, σm(x) = σn(x)} = {(x, kper(x), x) : k ∈ Z}.
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The groupoid of a graph

• The topology of G(E) has a basis consisting of compact open sets of the
form

Z(U,m,n,V) = {(x,m− n,y) : x ∈ U, y ∈ V, σm(x) = σn(y)},

where m,n ∈ N0, U is a compact open subset of ∂E≥m such that (σm)|U is
injective, V is a compact open subset of ∂E≥n such that (σn)|V is injective,
and σm(U) = σn(V).

• We have in particular that sets of the form

Z(μ,ν) := Z(Z(μ), |μ|, |ν|, Z(ν))

where μ,ν ∈ E∗ and r(μ) = r(ν), are compact and open.
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Open invariant sets

A subset A ⊆ E0 is said to be hereditary if r(AE1) ⊆ A, and saturated if v ∈ A for
each v ∈ E0

reg
for which r(vE1) ⊆ A.

Proposition

1 If A ⊆ E0 is hereditary and saturated, then
⋃

μ∈E∗A Z(μ) is an open invariant
subset of ∂E.

2 If U is an open invariant subset of ∂E, then {v ∈ E0 : Z(v) ⊆ U} is a
hereditary and saturated subset of E0.

3 A 7→
⋃

μ∈E∗A Z(μ) is a bijection between the hereditary and saturated subset

of E0 and the open invariant subset of ∂E. The inverse of this bijection is
the map U 7→ {v ∈ E0 : Z(v) ⊆ U}.
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Cofinal graphs and minimal graph groupoids

The graph E is said to be cofinal if there for every v,w ∈ E0 is a finite subset
F ⊆ wE∗ such that vE∗r(μ) 6=∅ for each μ ∈ F and Z(w) =

⋃

μ∈F Z(μ). Then E is
cofinal if and only if there only hereditary and saturated subsets of E0 are ∅
and E0.

Corollary

G(E) is minimal if and only if E is cofinal.
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Effective and topological principal graph groupoids

A loop ν = ν1 . . . νn ∈ En is said to have an exit if there is an i such that r(νi)E1

contains at least two elements. The graph E is said to satisfy Condition (L) if
every loop in E has an exit.

Proposition

The following are equivalent.

1 G(E) is effective.

2 G(E) is topologically principal.

3 The set of boundary paths which are not eventually periodic form a dense
subset of the boundary path space ∂E.

4 E satisfies Condition (L).
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AF graph groupoids

Proposition

If E0 and E1 are countable, then the following are equivalent.

1 G(E) is AF.

2 G(E) is principal.

3 E contains no loops.
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Locally contracting graph groupoids

• G(E) is locally contracting at x = x1x2 · · · ∈ ∂E if there for each n is a path
μ ∈ s(xn)E∗ and a loop ν ∈ r(μ)E∗ with an exit.

• G(E) is locally contracting if there for each v ∈ E0 is a path μ ∈ vE∗ and a
loop ν ∈ r(μ)E∗ with an exit.

Corollary

If G(E) is minimal and effective, then G(E) is locally contracting if E contains a
loop, and AF otherwise.
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Homology of graph groupoids

When A is a set, then we let ZA denote the abelian group

{(na)a∈A : each na ∈ Z, and na = 0 for all but finitely many a}.

For a0 ∈ A we let δa0 be the element (na)a∈A ∈ ZA where na0 = 1 and na = 0 for
a 6= a0.
Define a group homomorphism (1− AT

E
) : Z

E0
reg → ZE0

by

(1− AT
E
)δv = δv −
∑

e∈vE1

δr(e).
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Homology of graph groupoids

Theorem

1 There is an isomorphism from ZE0
/ im(1− AT

E
) to H0(G(E)) mapping [δv] to

[1Z(v)] for every v ∈ E0.

2 There is an isomorphism from ker(1− AT
E
) to H1(G(E)) mapping (nv)v∈E0

reg
to

∑

v∈E0
reg

nv
∑

e∈vE1 [1Z(e,r(e))] for every (nv)v∈E0
reg
∈ ker(1− AT

E
).

3 Hn(G(E)) = 0 for n ≥ 2.
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