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Outline of my 5 talks

1 Introduction to étale groupoids
2 Graph groupoids
3 C∗-algebras of groupoids
4 Orbit equivalence and isomorphism of graph groupoids
5 Equivalence of graph groupoids

T.M. Carlsen Graph groupoids and C∗-algebras Lecture 1/5 Page 1/24



Outline of this talk

1 What is a groupoid?
2 Topological groupoids
3 Étale groupoids
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Groupoids

Definition

A groupoid is a small category in which every morphism has an inverse.

If G is a groupoid, then we write
• G(0) for the set of objects, and
• G(1) for the set of morphisms.

Usually, we will identify an object with its corresponding identity morphism
and just write G instead of G(1).
For a morphism η ∈ G we write
• s(η) for its domain or source,
• r(η) for its codomain or range.
• η−1 for its inverse.
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Groupoids

• We thus have maps r, s : G→ G(0) and a map η 7→ η−1 from G to G.
• The composition or product η1η2 of η1, η2 ∈ G is then defined if and only if

s(η1) = r(η2).
• We let G(2) := {(η1, η2) ∈ G× G : s(η1) = r(η2)}.

The sets G, G(0), and G(2), and the maps r, s : G→ G(0), η 7→ η−1, and
(η1, η2) 7→ η1η2 have the following properties.

1 r(x) = x = s(x) for all x ∈ G(0).
2 r(η)η = η = ηs(η) for all η ∈ G.
3 r(η−1) = s(η) and s(η−1) = r(η) for all η ∈ G.
4 η−1η = s(η) and ηη−1 = r(η) for all η ∈ G.
5 r(η1η2) = r(η1) and s(η1η2) = s(η2) for all (η1, η2) ∈ G(2).
6 (η1η2)η3 = η1(η2η3) whenever (η1, η2), (η2, η3) ∈ G(2).
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Examples of groupoids

1 Let G be a group and let e be its identity. Then G is a groupoid with
G(0) := {e}, and the product and inverse given by the group operations.

2 Let X be a set. Then X is a groupoid with X(0) := X, r and s the identity
maps, the product defined by (x, x) 7→ x, and the inverse defined by
x−1 = x.

3 Let (E,X, π) be a group bundle, i.e., E and X are sets, π is a surjective map
from E to X, and π−1(x) is a group for each x ∈ X. Then E is a groupoid with
E(0) = {ex : x ∈ X}, where for each x ∈ X, ex is the identity of π−1(x);
r(η) = s(η) = eπ(η) and η−1 is the inverse of η in π−1(π(η)); and the product
of η1 and η2 is the product of η1 and η2 in π−1(π(η1)) = π−1(π(η2)).
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Examples of groupoids

4 Let X be a set and ∼ an equivalence relation on X. Let
G := {(x, y) ∈ X × X : x ∼ y}, let G(0) := {(x, x) ∈ G : x ∈ X} which we identify
with X, and define r, s : G→ X by r(x, y) = x and s(x, y) = y. For
(x1, y1), (x2, y2) with y1 = x2, let (x1, y1)(x2, y2) = (x1, y2); and let
(x, y)−1 = (y, x) for (x, y) ∈ G. Then G is a groupoid.

5 Let Γ be a group acting on the right on a set X. We write xγ for the action
of γ on x. Let

X o Γ := X × Γ.

Let (X o Γ)(0) := X × {e}, which we identify with X, and define r, s : X o Γ→ X
by r(x, γ) = x and s(x, γ) = xγ. Then

�

(x1, γ1), (x2, γ2)
�

∈ (X o Γ)(2) if and only
if γ2 = x1γ1, in which case we let (x1, γ1)(x1γ1, γ2) := (x1, γ1γ2). We also let
(x, γ)−1 := (xγ, γ−1). Then X o Γ is a groupoid.
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Isotropy and orbits

Let G be a groupoid. For x ∈ G(0) let
• xG := Gx := {η ∈ G : r(η) = x},
• Gx := Gx := {η ∈ G : s(η) = x},
• xGx := Gx

x
:= xG ∩Gx = {η ∈ G : s(η) = r(η) = x}.

Let Iso(G) :=
⋃

x∈G(0) xGx = {η ∈ G : s(η) = r(η)}. The groupoid G is principal if
Iso(G) = G(0).
• The orbit of an x ∈ G(0) is the set {r(η) : η ∈ Gx}.
• If r(η) = x and s(η) = x′, then η′ 7→ ηη′η−1 is an isomorphism from x′Gx′ to

xGx.
The groupoid G is transitive if orb(x) = G(0) for some, and thus for all, x ∈ G(0).
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Invariant and full subsets, and bisections

• If U ⊆ G(0), then we let GU := {η ∈ G : s(η) ∈ U}, UG := {η ∈ G : r(η) ∈ U},
and G|U := UG ∩GU.

• Then G|U is a subgroupoid of G.
• We say that U is invariant if UG = GU,
• and that U is full if r(GU) = G(0).
• A subset A of a groupoid G is called a bisection if the restrictions of r and s

to A are both injective.
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Topological groupoids

Definition

A topological groupoid is a groupoid G endowed with a topology under which
the maps r are s are continous maps from G to G(0), the map η 7→ η−1 is a
continous map from G to G, and the map (η1, η2) 7→ η1η2 is a continous map
from G(2) to G.
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Examples of topological groupoids

1 If G is any groupoid, then G becomes a topological groupoid if we equip it
with the discrete topology.

2 Let Γ be a topological group acting continuously on the right on a
topological space X. Then X o Γ is a topological groupoid if we endow
X o Γ = X × Γ with the product topology.

T.M. Carlsen Graph groupoids and C∗-algebras Lecture 1/5 Page 10/24



Minimal groupoids

• A topological groupoid G is minimal if ∅ and G(0) are the only invariant
open subsets of G(0).

• A topological groupoid G is minimal if and only if orb(x) is dense in G(0) for
every x ∈ G(0).
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Hausdorff groupoids

• If G is a topological groupoid, then G is Hausdorff if and only if G(0) is
closed in G.

• If G is a topological groupoid, then G(0) is Hausdorff if and only if G(2) is
closed in the product topology of G× G.
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Semi-étale groupoids

A continous map ϕ : X→ Y between topological spaces is said to be locally
injective if every x ∈ X has an open neighbourhood U such that ϕ|U is injective.

Proposition

Let G be a topological groupoid. Then the following are equivalent.

1 The map r : G→ G(0) is locally injective.

2 The map s : G→ G(0) is locally injective.

3 The topology on G has a basis consting of open bisections.

4 G(0) is open in G.

A topological groupoid satisfying the above conditions is said to be semi-étale
or r-discrete.
If G is an r-discrete groupoid and x ∈ G(0), then xG and Gx are both discrete
subsets of G.
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Étale groupoids

A continous map ϕ : X→ Y between topological spaces is called a local
homeomorphism if every x ∈ X has an open neighbourhood U such that ϕ(U) is
open in Y and ϕ|U : U→ ϕ(U) is a homeomorphism. Then ϕ is a local
homeomorphism if and only if it is locally injective and open.

Proposition

Let G be a topological groupoid. Then the following are equivalent.

1 The map r : G→ G is a local homeomorphism.

2 The map r : G→ G(0) is a local homeomorphism.

3 G(0) is open in G and the map r : G→ G(0) is open.

4 The map r : G→ G is open.

A topological groupoid satisfying the above conditions is said to be étale.
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Examples of étale groupoids

1 If G is any groupoid, then G becomes an étale groupoid if we equip it with
the discrete topology.

2 Let Γ be a topological group acting continuously on the right. Then X o Γ is
étale if and only if it is semi-étale, and if and only if Γ is discrete.
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Deaconu–Renault groupoids

Let X be a locally compact Hausdorff space, let M be a submonoid of an
abelian group Γ, and let (Um, σm)m∈M be a family of pairs such that each Um is
an open subset of X and each σm : Um→ X is a continuous locally injective map
such that U0 = X and σ0 = idX; and such that if m,n ∈M, then there is a k ∈M
such that k −m,k − n ∈M and Um ∩Un ⊆ Uk; and x ∈ Um+n if and only if x ∈ Un

and σn(x) ∈ Um, in which case σm(σn(x)) = σm+n(x).
Let

G(X, (Um, σm)m∈M) :=
⋃

m,n∈M

{(x,m− n,y) : x ∈ Um, y ∈ Un, σm(x) = σn(y)}

let G(X, (Um, σm)m∈M)(0) := {(x,0, x) : x ∈ X} which we identify with X in the
obvious way, and define r, s : G(X, (Um, σm)m∈M)→ X by r(x, k, y) = x and
s(x, k, y) = y.
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Deaconu–Renault groupoids

For (x1, k1, y1), (x2, k2, y2) ∈ G(X, (Um, σm)m∈M) with y1 = x2, let

(x1, k1, y1)(x2, k2, y2) = (x1, k1 + k2, y2) ∈ G(X, (Um, σm)m∈M);

and for (x, k, y) ∈ G(X, (Um, σm)m∈M), let

(x, k, y)−1 := (y,−k, x) ∈ G(X, (Um, σm)m∈M).

Then G(X, (Um, σm)m∈M) is a groupoid.
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Deaconu–Renault groupoids

For m,n ∈M and open subsets A of Um and B of Un for which (σm)|A and (σn)|B
are injective, let

Z(A,m,n,B) := {(x,m− n,y) : x ∈ A, y ∈ B, σm(x) = σn(y)}.

Then the collection

{Z(A,m,n,B) :m,n ∈M, A is an open subset of Um,

B is an open subset of Un, (σm)|A and (σn)|B are injective}

is a basis for a topology on G(X, (Um, σm)m∈M) that makes G(X, (Um, σm)m∈M) a
locally compact semi-étale Hausdorff groupoid called the Deaconu–Renault
groupoid of (X, (Um, σm)m∈M). If each σm : Um→ X is a local homeomorphism,
then G(X, (Um, σm)m∈M) is étale.
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Locally contracting groupoids
• An étale groupoid G is locally contracting at x ∈ G(0) if for every open

neighbourhood V ⊆ G(0) of x, there is an open set W ⊆ V and an open
bisection U ⊆ G such that W ⊆ s(U) and r(UW) ⊂ W (W is the closure of W in
G(0), and UW = {η ∈ U : s(η) ∈W}).

• The étale groupoid G is locally contracting if it is locally contracting at
every x ∈ G(0).

• If G is a minimal étale groupoid, then it is locally contracting at some
x ∈ G(0) if and only if it is locally contracting.

Example

If G(X, (Um, σm)m∈M) is the Deaconu–Renault groupoid of (X, (Um, σm)m∈M) and
x ∈ X, then G(X, (Um, σm)m∈M) is locally contracting at x if there for each
neighbourhood V of x are an open set W ⊆ V, m,n ∈M, and open sets A ⊆ Um

and B ⊆ Un such that (σm)|A and (σn)|B are injective, W ⊆ B ∩ σ−1
n

(σm(A)), and

A ∩ σ−1
m

(σn(B) ∩W) ⊂ W.
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Effective and topological principal groupoids

• If G is an topological groupoid, then we denote by Iso(G)◦ the interior of
Iso(G) in G.

• An étale groupoid G is said to be effective if Iso(G)◦ = G(0),
• and topologically principal if {x ∈ G(0) : xGx = {x}} is dense in in G(0).

Example

If G(X, (Um, σm)m∈M) is the Deaconu–Renault groupoid of (X, (Um, σm)m∈M), then
G(X, (Um, σm)m∈M) is effective if there is no triple (U,n,m) consisting of a
nonempty open subset U ⊆ X and distinct elements m,n ∈M such that
U ⊆ Um ∩Un and σm(x) = σn(x) for every x ∈ U; and G(X, (Um, σm)m∈M) is
topologically principal if and only if there is no nonempty open subset U ⊆ X
such that there for each x ∈ U are distinct elements mx, nx ∈M such that
x ∈ Umx ∩Unx and σmx(x) = σnx(x).
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Effective and topological principal groupoids

• If G is an étale groupoid, then it is effective if it is Hausdorff and
topologically principal;

• and it is topologically principal, if it is second countable and effective, and
G(0) has the Baire property.
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AF groupoids

An étale groupoid is said to be an AF-groupoid (approximately finite
dimensional-groupoid) if G(0) is second countable, locally compact and
Hausdorff, and there is an increasing sequence K1 ⊆ K2 ⊆ · · · ⊆ G of
subgroupoids such that

1 each Kn is principal,
2 K

(0)
n = G(0) and Kn \G(0) is compact for each n,

3 and
⋃∞

n=1 Kn = G.

Example

Let X = {0,1}N and equip it with the product topology. Then X is second
countable, compact and Hausdorff. Define an equivalence relation ∼ on X by
(xn)n∈N ∼ (yn)n∈N⇔ there exists an N ∈ N such that xn = yn for n ≥ N, and let G
be the groupoid of ∼. Then G is étale. For N ∈ N, let
KN = {((xn)n∈N, (yn)n∈N) : xn = yn for n ≥ N}. Then K1 ⊆ K2 ⊆ · · · ⊆ G satisfies the
3 condition above, so G is AF.
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Homology of étale groupoids

If ϕ : X→ Y is a continuous local homeomorphism between locally compact
Hausdorff spaces, then we define ϕ∗ : Cc(X,Z)→ Cc(Y,Z) by
ϕ∗(f )(y) =

∑

ϕ(x)=y f (x).
Let G be a locally compact Hausdorff étale groupoid. For n ∈ N, let

G(n) := {(η1, . . . , ηn) : s(ηi) = r(ηi+1) for i = 1, . . . , n− 1}.

For i = 0,1, . . . , n, define di : G(n)→ G(n−1) by

di((η1, . . . , ηn)) =











(η2, . . . , ηn) if i = 0,
(η1, . . . , ηiηi+1, ηn) if 0 < i < n,

(η1, . . . , ηn−1) if i = n.

Then di is a continuous local homeomorphism.
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Homology of étale groupoids

Define δn : Cc(G(n),Z)→ Cc(G(n−1),Z) by δ1 = s∗ − r∗ and δn =
∑n

i=0(−1)idi∗.
Then

0
δ0←− Cc(G(0),Z)

δ1←− Cc(G(1),Z)
δ2←− Cc(G(2),Z)

δ3←− . . .

is a chain complex. The nth homology group of G is Hn(G) := ker δn/ im δn+1.

Example

Let Γ be a discrete group that acts continuously on the right on a locally
compact Hausdorff space X. Then im δ1 = {f − f (·γ) : f ∈ Cc(X,Z), γ ∈ Γ}. So
H0(X o Γ) = Cc(X,Z)/{f − f (·γ) : f ∈ Cc(X,Z), γ ∈ Γ}.
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